数学物理学报 ›› 2019, Vol. 39 ›› Issue (4): 785-796.
收稿日期:
2017-09-15
出版日期:
2019-08-26
发布日期:
2019-09-11
通讯作者:
李润洁
E-mail:yang0915@hnu.edu.cn
作者简介:
阳超, E-mail:基金资助:
Received:
2017-09-15
Online:
2019-08-26
Published:
2019-09-11
Contact:
Runjie Li
E-mail:yang0915@hnu.edu.cn
Supported by:
摘要:
该文研究了一类具有不连续捕获项的非光滑混合时滞Lasota-Wazewska模型.基于非光滑分析、Kakutani's不动点理论和常Lyapunov方法,建立了易于验证的与时滞无关的稳定性准则,同时保证模型的正周期解的存在性和全局指数稳定性,并给出了对应的仿真实例来验证该文中方法的正确性和有效性.
中图分类号:
阳超,李润洁. 一类具有不连续捕获的Lasota-Wazewska模型周期解存在性及稳定性分析[J]. 数学物理学报, 2019, 39(4): 785-796.
Chao Yang,Runjie Li. Existence and Stability of Periodic Solution for a Lasota-Wazewska Model with Discontinuous Harvesting[J]. Acta mathematica scientia,Series A, 2019, 39(4): 785-796.
1 | Wazewska-Czyzewska , Maria , Lasota , et al. Mathematical problems of the dynamics of a system of red blood cells. Mat Stos, 1976, 6 (3): 23- 40 |
2 | Long Z . Global asymptotic stability of pseudo almost periodic solutions to a Lasota-Wazewska model with distributed delays. Electronic Journal of Qualitative Theory of Differential Equations, 2015, 2015 (51): 1- 3 |
3 | Duan L , Huang L , Chen Y . Global exponential stability of periodic solutions to a delay Lasota-Wazewska model with discontinuous harvesting. Proceedings of the American Mathematical Society, 2016, 144 (2): 561- 573 |
4 | Fink A . Almost Periodic Differential Equations. Berlin: Springer, 1974 |
5 | Clark C . The optimal management of renewable resources. Natural Resource Modelling, 1990, 43 (1): 31- 52 |
6 |
Martin A , Ruan S . Predator-prey models with delay and prey harvesting. Journal of Mathematical Biology, 2001, 43 (3): 247- 267
doi: 10.1007/s002850100095 |
7 |
Xiao D , Jennings L . Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. SIAM Journal on Applied Mathematics, 2005, 65 (3): 737- 753
doi: 10.1137/S0036139903428719 |
8 |
Pei Y , Lv Y , Li C . Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system. Applied Mathematical Modelling, 2012, 36 (4): 1752- 1765
doi: 10.1016/j.apm.2011.09.015 |
9 |
Costa M , Meza M . Dynamical stabilization of grazing systems:An interplay among plant-water interaction, overgrazing and a threshold management policy. Mathematical Biosciences, 2006, 204 (2): 250- 259
doi: 10.1016/j.mbs.2006.05.010 |
10 |
Bischi G , Lamantia F , Tramontana F . Sliding and oscillations in fisheries with on-off harvesting and different switching times. Communications in Nonlinear Science and Numerical Simulation, 2014, 19 (1): 216- 229
doi: 10.1016/j.cnsns.2013.05.023 |
11 | Huang L , Wu J . The role of threshold in preventing delay-induced oscillations of frustrated neural networks with McCulloch-Pitts nonlinearity. International Journal of Mathematics, Game Theory and Algebra, 2001, 11 (6): 71- 100 |
12 | Filippov A . Differential equations with discontinuous right-hand sides and differential inclusions. Nonlinear Analysis and Nonlinear Differential Equations, 1988, 154 (2): 265- 288 |
13 |
Adhikari S , Yang C , Kim H , et al. Memristor bridge synapse-based neural network and its learning. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23 (9): 1426- 1435
doi: 10.1109/TNNLS.2012.2204770 |
14 |
Chua L . Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 1971, 18 (5): 507- 519
doi: 10.1109/TCT.1971.1083337 |
15 | Sprott J . A new class of chaotic circuit. Physics Letters A, 2000, 266 (1): 19- 23 |
16 |
Chen G , Ueta T . Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 1999, 9 (7): 1465- 1466
doi: 10.1142/S0218127499001024 |
17 |
Liang Z . Asymptotically periodic solutions of a class of second order nonlinear differential equations. Proceedings of the American Mathematical Society, 1987, 99 (4): 693- 699
doi: 10.1090/S0002-9939-1987-0877042-9 |
18 | Li J , Wang Z . Existence and global attractivity of positive periodic solutions of a survival model of red blood cells. Computers and Mathematics with Applications, 2005, 50 (1/2): 41- 47 |
19 | Xu W , Li J . Global attractivity of the model for the survival of red blood cells with several delays. Annals of Differential Equations, 1998, 14 (2): 259- 265 |
20 |
Wang J , Fec M , Zhou Y . Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2013, 18 (2): 246- 256
doi: 10.1016/j.cnsns.2012.07.004 |
21 | Zhang C . Almost Periodic Type Functions and Ergodicity. Berlin: Springer, 2009 |
22 | Zhang C . Pseudo almost periodic solutions of some differential equations. Journal of Mathematical Analysis and Applications, 1994, 181 (1): 62- 76 |
23 | Filippov A . Differential Equations with Discontinuous Righthand Sides:Control Systems. New York: Springer Science and Business Media, 1988 |
24 | 黄立宏, 郭振远, 王佳伏. 右端不连续微分方程理论与应用. 北京: 科学出版社, 2011 |
Huang L , Guo Z , Wang J . Theory and Application of Right end Discontinuous Differential Equations. Beijing: Science Press, 2011 | |
25 | 张海, 郑祖庥, 蒋威. 非线性分数阶泛函微分方程解的存在性. 数学物理学报, 2011, 31A (2): 289- 297 |
Zhang H , Zheng Z , Jiang W . Existence of solutions for nonlinear fractional functional differential equations. Acta Mathematica Scientia, 2011, 31A (2): 289- 297 | |
26 | 鲁红英, 王克. 具周期系数的单种群模型及其最优捕获策略. 数学物理学报, 2005, 25A (6): 176- 182 |
Lu H , Wang K . Single population model with periodic coefficients and its optimal harvesting strategy. Acta Mathematica Scientia, 2005, 25A (6): 176- 182 | |
27 | Aubin J , Cellina A . Differential Inclusions. Berlin: Springer-Verlag, 1984: 8- 13 |
28 |
Forti M , Nistri P . Global convergence of neural networks with discontinuous neuron activations. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications, 2003, 50 (11): 1421- 1435
doi: 10.1109/TCSI.2003.818614 |
29 |
Forti M , Grazzini M , Nistri P , et al. Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Physica D:Nonlinear Phenomena, 2006, 214 (1): 88- 99
doi: 10.1016/j.physd.2005.12.006 |
30 |
Yan J . Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model. Journal of Mathematical Analysis and Applications, 2003, 279 (1): 111- 120
doi: 10.1016/S0022-247X(02)00613-3 |
31 | Wang D , Huang L . Periodicity and multi-periodicity of generalized Cohen-Grossberg neural networks via functional differential inclusions. Nonlinear Dynamics, 2016, 1- 20 |
32 | Hamaya Y . Almost periodic dynamic of a discrete Wazewska-Lasota model. Communications in Mathematics and Applications, 2013, 4 (3): 189- 199 |
33 | Liu G , Yan W , Yan J . Periodic solutions for a class of neutral functional differential equations with infinite delay. Nonlinear Analysis:Theory, Methods and Applications, 2009, 71 (1): 604- 613 |
34 |
Saker S . Oscillation and global attractivity in hematopoiesis model with periodic coefficients. Applied Mathematics and Computation, 2003, 142 (2): 477- 494
doi: 10.1016/S0096-3003(02)00315-6 |
35 |
Liu X , Meng J . The positive almost periodic solution for Nicholson-type delay systems with linear harvesting terms. Applied Mathematical Modelling, 2012, 36 (7): 3289- 3298
doi: 10.1016/j.apm.2011.09.087 |
36 | Fan M , Wang K . Global existence of positive periodic solutions of periodic predator-prey system with infinite delays. Journal of Mathematical Analysis and Applications, 2001, 262 (1): 1- 11 |
37 |
Liu M , Wang K . Global asymptotic stability of a stochastic Lotka-Volterra model with infinite delays. Communications in Nonlinear Science and Numerical Simulation, 2012, 17 (8): 3115- 3123
doi: 10.1016/j.cnsns.2011.09.021 |
[1] | 熊君, 李俊民, 何超. 一阶双曲型偏微分方程的模糊边界控制[J]. 数学物理学报, 2017, 37(3): 469-477. |
[2] | 傅金波, 陈兰荪. 基于生态环境和反馈控制的多种群竞争系统的正周期解[J]. 数学物理学报, 2017, 37(3): 553-561. |
[3] | 张丽萍, 刘东毅, 张国山. 带有内部扰动的Timoshenko梁系统的指数稳定性[J]. 数学物理学报, 2017, 37(1): 185-198. |
[4] | 姜阿尼. 一类具振动循环损失率的造血模型的伪概周期解[J]. 数学物理学报, 2016, 36(1): 80-89. |
[5] | 叶辉, 蔡东汉. 周期性果蝇模型解的整体稳定性[J]. 数学物理学报, 2013, 33(6): 1013-1021. |
[6] | 张雨田, 罗琦. 具反应扩散项和Neumann边界条件的脉冲变时滞细胞神经网络的全局指数稳定性[J]. 数学物理学报, 2013, 33(4): 777-786. |
[7] | 章春国. 具有局部记忆阻尼的非均质Timoshenko梁的稳定性[J]. 数学物理学报, 2012, 32(1): 186-200. |
[8] | 张若军, 王林山. 具有分布时滞的细胞神经网络的概周期解[J]. 数学物理学报, 2011, 31(2): 422-429. |
[9] | 汪红初, 胡适耕. 基于LMI方法的多时滞随机神经网络的指数稳定性[J]. 数学物理学报, 2010, 30(1): 42-53. |
[10] | 秦发金. 一类具有收获率和扩散的时滞阶段结构捕食系统的多重正周期解[J]. 数学物理学报, 2009, 29(6): 1613-1622. |
[11] | 谢强军;张光新;周泽魁. 一类周期反应扩散方程正周期解的存在性[J]. 数学物理学报, 2009, 29(2): 465-474. |
[12] | 夏文华;邓飞其;罗毅平. 具周期输入的有限连续分布时滞神经网络周期解的全局指数稳定性[J]. 数学物理学报, 2009, 29(1): 170-178. |
[13] | 房辉; 王志成. 具投放的中立型时滞竞争扩散系统正周期解的存在性[J]. 数学物理学报, 2008, 28(4): 719-730. |
[14] | 徐文雄;张太雷;徐宗本. 一类具有多时滞捕食-被捕食系统正周期解的存在性[J]. 数学物理学报, 2008, 28(1): 39-045. |
[15] | 刘炳文;黄立宏. 时滞细胞神经网络概周期解的存在性与全局指数稳定性[J]. 数学物理学报, 2007, 27(6): 1082-1088. |
|