数学物理学报, 2019, 39(3): 431-440 doi:

论文

2×2有界块算子矩阵的本质谱与Weyl谱

李琳,1,2

Essential and Weyl Spectra of 2×2 Bounded Block Operator Matrices

Li Lin,1,2, Alatancang ,3

通讯作者: 阿拉坦仓, E-mail: alatanca@sina.com

收稿日期: 2018-06-7  

基金资助: 国家自然科学基金.  11761029
国家自然科学基金.  11861048
内蒙古自然科学基金.  2016MS0105
河套学院自然科学基金.  HYZY201702

Received: 2018-06-7  

Fund supported: the NSFC.  11761029
the NSFC.  11861048
the Natural Science Foundation of Inner Mongolia.  2016MS0105
the Natural Science Foundation of Hetao College.  HYZY201702

作者简介 About authors

李琳,lilinneida@126.com , E-mail:lilinneida@126.com

摘要

研究了2×2有界块算子矩阵是Fredholm算子、Weyl算子的充要条件;给出了2×2有界块算子矩阵的本质谱、Weyl谱与其子块算子本质谱、Weyl谱的关系.

关键词: 本质谱 ; Weyl谱 ; 块算子矩阵

Abstract

This paper is concerned with the necessary and sufficient conditions that a class of bounded 2×2 block operator matrices are Fredholm operators or Weyl operators. Some necessary and sufficient conditions are given under which the essential spectrum and the Weyl spectrum of the block operator matrix coincide with the essential spectrum and the Weyl spectrum of its entries.

Keywords: Essential spectrum ; Weyl spectrum ; Block operator matrices

PDF (313KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李琳. 2×2有界块算子矩阵的本质谱与Weyl谱. 数学物理学报[J], 2019, 39(3): 431-440 doi:

Li Lin, Alatancang . Essential and Weyl Spectra of 2×2 Bounded Block Operator Matrices. Acta Mathematica Scientia[J], 2019, 39(3): 431-440 doi:

1 引言

算子矩阵是以线性算子为元素的矩阵,其研究在算子矩阵理论中非常广泛.无论从理论角度还是从实际应用角度来讲,算子矩阵理论的研究具有深远的意义.理论上,如果Hilbert空间$H$可以分为两个Hilbert空间$X$$Y$的直和,即$H=X\oplus Y$,那么$H$上的任意有界线性算子${\cal A}$可以表示为$2\times2$算子矩阵

$\begin{equation}\label{eq:0.1}{\cal A}=\left( \begin{array}{cc} A ~~& B \\ C ~~& D \\ \end{array} \right), \end{equation} $

其中$A\in B(X), B\in B(Y, X), C\in B(X, Y), D\in B(Y).$由此,通过研究子块算子的性质可以刻画算子矩阵${\cal A}$的性质.实际问题上,算子矩阵出现在很多数学物理问题中,如流体力学、弹性力学、电磁学以及量子力学等数学物理问题.我们知道这些问题一部分可以导入无穷维Hamilton系统,与此对应的算子矩阵就是Hamilton算子矩阵.它是一类广泛应用的$2\times2$算子矩阵(见文献[1-5]).因此,算子矩阵理论的研究非常重要.

通常算子矩阵的谱与其内部算子的谱有着紧密联系,算子矩阵的谱是否可以由其内部算子的谱完全刻画呢?很多学者对此做了大量工作,例如1994年杜鸿科教授(见文献[6])对上三角算子矩阵$M_{C}=\left(\begin{array}{cc} A ~~& C \\ 0 ~~& B \\ \end{array} \right)$进行研究,得到$\sigma(M_{C})\subset\sigma(A)\cup\sigma(B)$; 2000年Han等人在文献[7]中给出,当$\sigma_{ap}(A)\cap\sigma_{\delta}(B)=\emptyset$时, $\sigma(M_{C})=\sigma(A)\cup\sigma(B).$此外, Zguitti, Zerouali等学者给出近似点谱、本质谱、Weyl谱、Browder谱、本质近似点谱和Browder本质近似点谱的类似结果(见文献[8-13]).鉴于算子矩阵谱性质的研究现状,本文主要考虑一般$2\times2$有界算子矩阵${\cal A}=\left(\begin{array}{cc} A ~~& B \\ C ~~& D \\ \end{array} \right)$的本质谱、Weyl谱与其内部算子谱的关系,得到

的充分条件,进而得到一些相关结论.

2 预备知识

本文中,以$X, Y$$Z$表示复无穷维Hilbert空间, $X^{*}$表示$X$的共轭空间, $X\times Y$表示$X$$Y$的乘积空间.对于$X$的子空间$U, V$,以$U\oplus V$表示$U, V$的正交直和. $B(X, Y)$表示$X$$Y$的有界线性算子全体; $B(X)$简记$X$$X$的有界线性算子全体.对于$T\in B(X)$, $T^{*}$表示$T$的共轭算子, $\rho(T)$表示$T$的预解集, $N(T)$$R(T)$分别表示$T$的零空间与值域, $T$的零空间的维数表示为$\alpha(T)$, $T$的商空间$X/R(T)$的余维数表示为$\beta(T)$.如果$\alpha(T)$$\beta(T)$有限,则称$ind(T)=\alpha(T)-\beta(T)$$T$的指标. $T$的升指数表示为$asc(T)$,是指满足$N(T^{k})=N(T^{k+1})$的最小非负整数$k$,如果这样的$k$不存在,则记$asc(T)=\infty$; $T$的降指数记为$des(T)$,是指满足$R(T^{k})=R(T^{k+1})$的最小非负整数$k$,如果这样的$k$不存在,则记$des(T)=\infty$.如无特殊说明,本文的有界线性算子矩阵${\cal A}$都是指(1.1)式给出的算子矩阵${\cal A}=\left(\begin{array}{cc} A ~~& B \\ C ~~& D \\ \end{array} \right)$.

定义2.1   $T\in B(X)$,

(ⅰ)若$T$的值域是闭的且$\alpha(T) < \infty$,则称$T$为左Fredholm算子;

(ⅱ)若$T$$\beta(T) < \infty$,则称$T$为右Fredholm算子;

(ⅲ)若$T$既是左Fredholm算子又是右Fredholm算子,则称$T$是Fredholm算子.

定义2.2   $T\in B(X)$,

(ⅰ)如果$T$是左Fredholm算子且$ind(T)\leq 0$,则称$T$为左Weyl算子;

(ⅱ)如果$T$是右Fredholm算子且$ind(T)\geq 0$,则称$T$为右Weyl算子;

(ⅲ)如果$T$既是左Weyl算子又是右Weyl算子,则称$T$为Weyl算子.

定义2.3   $T\in B(X)$,则$T$的左本质谱、右本质谱、本质谱和Weyl谱定义为

定义2.4  设$A\in B(X, Y)$, $X=N(A)\oplus X_{0}$, $Y=R(A)\oplus Y_{0}$,其中$X_{0}$$Y_{0}$分别是$X$$Y$的闭子空间.定义映射$\widetilde{A}:X_{0}\times Y_{0}\rightarrow Y$

$\begin{equation}\widetilde{A}(x_{0}, y_{0})=Ax_{0}+y_{0}, \end{equation}$

$\widetilde{A}$$A$生成的双射.

引理2.1[14]  如果$A:X\rightarrow Y$$B:Y\rightarrow Z$是Fredholm算子,那么$BA$也是Fredholm算子,且$ ind(BA)=ind(A)+ind(B).$

引理2.2[14]  令$A:X\rightarrow Y$是Fredholm算子, $\widetilde{A}$是由$A$生成的双射.如果$B:X\rightarrow Y$是有界线性算子且$\|B\| < \|\tilde{A}^{-1}\|^{-1}$,那么$A+B$是Fredholm算子,并且

(ⅰ) $\alpha(A+B)\leq \alpha(A); $

(ⅱ) $\beta(A+B)\leq \beta(A); $

(ⅲ) $ind(A+B)=ind(A).$

引理2.3[14]  如果$A:X\rightarrow Y$是Fredholm算子, $K:Y\rightarrow Z$是紧算子,那么$A+K$也是Fredholm算子,并且$ ind(A+K)=ind(A).$

3 次对角元算子的本质谱、Weyl谱

首先,利用算子矩阵的二次补方法研究算子矩阵${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$的次对角元素,得到${\cal A}$是Fredholm算子的充分必要条件.

定理3.1[14]  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times {\cal H}_{2}$上的有界线性算子.若$B$有有界逆算子,则对$\lambda\in{\Bbb C}$,有

(ⅰ) ${\cal A}-\lambda$是左Fredholm算子当且仅当$C-(D-\lambda)B^{-1}(A-\lambda)$是左Fredholm算子;

(ⅱ) ${\cal A}-\lambda$是右Fredholm算子当且仅当$C-(D-\lambda)B^{-1}(A-\lambda)$是右Fredholm算子.

  因为$B$有有界逆算子,所以我们可以得到

$\begin{equation}\label{eq:0} {\cal A}-\lambda=\left( \begin{array}{cc} I~~& 0 \\ (D-\lambda)B^{-1} ~~& I \\ \end{array} \right) \left( \begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array} \right) \left( \begin{array}{cc} I~~& 0 \\ B^{-1}(A-\lambda) ~~& I \\ \end{array} \right), \end{equation}$

其中$\lambda\in {\Bbb C}$, $T_{1}(\lambda)=C-(D-\lambda)B^{-1}(A-\lambda).$

注意到(3.1)式中第一和最后的算子矩阵是${\cal H}_{1}\times {\cal H}_{2}$上的双射,并且$B$有有界逆算子,因此${\cal A}-\lambda$是左Fredholm算子当且仅当$\left(\begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array} \right)$是左Fredholm算子.

又因为$B$是有界算子且有有界逆算子,所以$B$$B^{^{-1}}$都是闭算子,从而$R(B)$是闭的.因此$R\left(\begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array}\right)$是闭的当且仅当$R(T_{1}(\lambda))$是闭的, $\alpha\left(\begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array}\right) < \infty$当且仅当$\alpha(T_{1}(\lambda)) < \infty.$所以(ⅰ)成立.

同理, ${\cal A}-\lambda$是右Fredholm算子当且仅当$\left(\begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array} \right)$是右Fredholm算子.又因为

所以(ⅱ)成立.结论证毕.

注3.1  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times {\cal H}_{2}$上的有界线性算子, $C$有有界逆算子.则对$\lambda\in{\Bbb C}$,

(ⅰ) ${\cal A}-\lambda$是左Fredholm算子当且仅当$B-(A-\lambda)C^{-1}(D-\lambda)$是左Fredholm算子;

(ⅱ) ${\cal A}-\lambda$是右Fredholm算子当且仅当$B-(A-\lambda)C^{-1}(D-\lambda)$是右Fredholm算子.

推论3.1  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times {\cal H}_{2}$上的有界线性算子, $B$有有界逆算子, $C$是Fredholm算子, $\widetilde{C}$$C$生成的双射.若$\|(D-\lambda)B^{-1}(A-\lambda)\|\leq\|\widetilde{C}^{-1}\|^{-1}$,则

(ⅰ) ${\cal A}-\lambda$是Fredholm算子;

(ⅱ) $ind({\cal A}-\lambda)=ind C$;

(ⅲ)若$C$是Weyl算子,则${\cal A}-\lambda$是Weyl算子.

  对$\lambda\in {\Bbb C}$,根据定理$3.1$${\cal A}-\lambda$是Fredholm算子当且仅当$C-(D-\lambda)B^{-1}(A-\lambda)$是Fredholm算子.因为

$\begin{equation}\|(D-\lambda)B^{-1}(A-\lambda)\|\leq\|\widetilde{C}^{-1}\|^{-1}, \end{equation} $

所以根据引理$2.2$$C-(D-\lambda)B^{-1}(A-\lambda)$是Fredholm算子,并且

$\begin{equation} \label{eq:t2}ind\left(C-(D-\lambda)B^{-1}(A-\lambda)\right)=ind(C).\end{equation}$

因此(ⅰ)成立.

因为$B$有有界逆算子,所以

$\begin{equation}\label{eq:t1} {\cal A}-\lambda=\left( \begin{array}{cc} I~~& 0 \\ (D-\lambda)B^{-1} ~~& I \\ \end{array} \right) \left( \begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array} \right) \left( \begin{array}{cc} I~~& 0 \\ B^{-1}(A-\lambda) ~~& I \\ \end{array} \right), \end{equation}$

其中$\lambda\in {\Bbb C}$, $T_{1}(\lambda)=C-(D-\lambda)B^{-1}(A-\lambda).$

注意到(3.4)式中第一和最后的算子矩阵是${\cal H}_{1}\times {\cal H}_{2}$上的双射,因此

$ \begin{equation}ind\left({\cal A}-\lambda\right)= ind\left(C-(D-\lambda)B^{-1}(A-\lambda)\right). \end{equation} $

从而由(3.3式知(ⅱ)成立.

(ⅲ)因为$C$是Weyl算子,所以$B$$C$都是Fredholm算子,并且

$ \begin{equation}ind(B)=ind(C)=0. \end{equation}$

由(ⅰ)和(ⅱ)知${\cal A}-\lambda$是Fredholm算子,并且

$ \begin{equation}ind({\cal A}-\lambda)=0. \end{equation} $

因此(ⅲ)成立.结论证毕.

推论3.2  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times {\cal H}_{2}$上的有界线性算子, $B$有有界逆算子,则

(ⅰ) ${\cal A}-\lambda$是左Weyl算子当且仅当$C-(D-\lambda)B^{-1}(A-\lambda)$是左Weyl算子;

(ⅱ) ${\cal A}-\lambda$是右Weyl算子当且仅当$C-(D-\lambda)B^{-1}(A-\lambda)$是右Weyl算子.

  令$T_{1}(\lambda)=C-(D-\lambda)B^{-1}(A-\lambda)$.

因为$B$有有界逆算子,所以$\alpha(B)=\beta(B)=0$,因此

$\begin{equation}ind({\cal A}-\lambda)=ind\left( \begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array} \right)=ind(T_{1}(\lambda)).\end{equation}$

根据定理$3.1$知(ⅰ)成立. (ⅱ)的证明与(ⅰ)相似.

注3.2  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times {\cal H}_{2}$上的有界线性算子, $C$有有界逆算子,则

(ⅰ) ${\cal A}-\lambda$是左Weyl算子当且仅当$B-(A-\lambda)C^{-1}(D-\lambda)$是左Weyl算子;

(ⅱ) ${\cal A}-\lambda$是右Weyl算子当且仅当$B-(A-\lambda)C^{-1}(D-\lambda)$是右Weyl算子.

定理3.2  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times {\cal H}_{2}$上的有界线性算子.若$B$有有界逆算子,则

$\begin{equation}\label{eq:01}\sigma_{e}({\cal A})=\{\lambda\in{\Bbb C} : C-(D-\lambda)B^{-1}(A-\lambda) \hbox{不是Fredholm算子}\}; \end{equation} $

$\begin{equation}\label{eq:02}\sigma_{w}({\cal A})=\{\lambda\in{\Bbb C} : C-(D-\lambda)B^{-1}(A-\lambda) \hbox{不是Weyl算子}\}. \end{equation} $

  因为$B$有有界逆算子,所以我们可以得到

$\begin{equation}\label{eq:3} {\cal A}-\lambda=\left( \begin{array}{cc} I~~& 0 \\ (D-\lambda)B^{-1} ~~& I \\ \end{array} \right) \left( \begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array} \right) \left( \begin{array}{cc} I~~& 0 \\ B^{-1}(A-\lambda) ~~& I \\ \end{array} \right), \end{equation}$

其中$\lambda\in {\Bbb C}$, $T_{1}(\lambda)=C-(D-\lambda)B^{-1}(A-\lambda).$

注意到(3.11)式中第一和最后的算子矩阵是${\cal H}_{1}\times {\cal H}_{2}$上的双射,并且$B$有有界逆算子,因此

$\begin{equation}\alpha({\cal A}-\lambda)=\alpha(\left( \begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array} \right))=\alpha\left(T_{1}(\lambda)\right), \end{equation}$

$ \begin{equation}\beta({\cal A}-\lambda)=\beta(\left( \begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array} \right))=\beta(T_{1}(\lambda)).\end{equation}$

根据定理3.1知${\cal A}-\lambda$是Fredholm算子当且仅当$T_{1}(\lambda)$是Fredholm算子,从而(3.9)式成立.

由推论3.2知${\cal A}-\lambda$是Weyl算子当且仅当$T_{1}(\lambda)$是Weyl算子,从而(3.10)式成立.结论证毕.

注3.3  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times {\cal H}_{2}$上的有界线性算子, $C$有有界逆算子,则

$ \begin{equation}\label{eq:03}\sigma_{e}({\cal A})=\{\lambda\in{\Bbb C} : B-(A-\lambda)C^{-1}(D-\lambda) \hbox{不是Fredholm算子}\}; \end{equation} $

$ \begin{equation}\label{eq:04}\sigma_{w}({\cal A})=\{\lambda\in{\Bbb C} : B-(A-\lambda)C^{-1}(D-\lambda) \hbox{不是Weyl算子}\}. \end{equation} $

定理3.3  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times{\cal H}_{2}$上的有界线性算子.若$B$有有界逆算子, $C$是紧算子,则

  若$\lambda\notin \sigma_{e}(A)\cup\sigma_{e}(D)$,则$(D-\lambda)$$(A-\lambda)$都是Fredholm算子.因为$B$有有界逆算子,所以$B$是Fredholm算子.根据引理2.1知, $(D-\lambda)B^{-1}(A-\lambda)$是Fredholm算子.因为$C$是紧算子,所以根据引理2.2知$T_{1}(\lambda)$是Fredholm算子.由定理3.2知$\lambda\notin \sigma_{e}({\cal A}).$

根据引理2.3,我们得到

$ \begin{equation}ind({\cal A}-\lambda)=ind(\left( \begin{array}{cc} 0~~&B \\ T_{1}(\lambda) ~ & 0 \\ \end{array} \right))=ind(T_{1}(\lambda))=ind(A-\lambda)+ind(D-\lambda).\end{equation}$

$\lambda\notin \sigma_{w}(A)\cup\sigma_{w}(D)$,则$\lambda\notin \sigma_{e}({\cal A})$$ind(A-\lambda)=ind(D-\lambda)=0.$因此$\lambda\notin \sigma_{w}({\cal A}).$结论证毕.

推论3.3  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times{\cal H}_{2}$上的有界线性算子,若$C$有有界逆算子, $B$是紧算子,则

例3.1  考虑有界线性算子矩阵

其中$I$表示单位算子, $A, B, C\in L(l^{2})$分别定义为

显然,对$\lambda\in {\Bbb C}$,有

其中$T_{1}(\lambda)=C-(D-\lambda)(A-\lambda)$.根据定理3.2知

$ \begin{equation}\label{eq:3.1} \sigma_{e}({\cal A})=\{\lambda\in{\Bbb C} : C-(D-\lambda)(A-\lambda) \hbox{不是Fredholm算子}\}, \end{equation}$

$ \begin{equation}\label{eq:3.2} \sigma_{w}({\cal A})=\{\lambda\in{\Bbb C} : C-(D-\lambda)(A-\lambda) \hbox{不是Weyl算子}\}. \end{equation}$

另一方面(参考文献[10]),通过直接计算得到

并且

其中

从而(3.17)式和(3.18)式成立.

4 主对角元算子的本质谱、Weyl谱

下面,我们研究算子矩阵${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$的主对角元素的性质.讨论主对角元素本质谱、Weyl谱与算子矩阵${\cal A}$的本质谱、Weyl谱的关系.

定理4.1  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times{\cal H}_{2}$上的有界线性算子,则对任意$\lambda\in\rho(D)$,

(ⅰ) ${\cal A}-\lambda$是左Fredholm算子当且仅当$A-\lambda-B(D-\lambda)^{-1}C$是左Fredholm算子;

(ⅱ) ${\cal A}-\lambda$是右Fredholm算子当且仅当$A-\lambda-B(D-\lambda)^{-1}C$是右Fredholm算子.

  对任意$\lambda\in\rho(D)$,我们有

$\begin{equation}\label{eq:4.01} {\cal A}-\lambda =\left( \begin{array}{cc} I~~ & B(D-\lambda)^{-1} \\ 0 ~~& I \\ \end{array} \right) \left( \begin{array}{cc} S_{1}(\lambda) ~~& 0 \\ 0 ~~& D-\lambda \\ \end{array} \right) \left( \begin{array}{cc} I~~& 0 \\ (D-\lambda)^{-1}C~~& I \\ \end{array} \right), \end{equation}$

其中$S_{1}(\lambda)=A-\lambda-B(D-\lambda)^{-1}C.$

注意到在(4.1)式中,第一和最后一个块算子矩阵都是有界算子且有有界逆算子.因此${\cal A}-\lambda$是左Fredholm算子当且仅当$\left(\begin{array}{cc} S_{1}(\lambda) ~ & 0 \\ 0 ~~& D-\lambda \\ \end{array} \right)$是左Fredholm算子.

因为$D-\lambda$是双射,所以$R(D-\lambda)$是闭集.因此$R(\left(\begin{array}{cc} S_{1}(\lambda) ~~& 0 \\ 0 ~~& D-\lambda \\ \end{array} \right))$是闭集当且仅当$R(S_{1}(\lambda))$是闭集,并且$\alpha(\left(\begin{array}{cc} S_{1}(\lambda) ~~& 0 \\ 0 ~~& D-\lambda \\ \end{array} \right)) < \infty$当且仅当$\alpha(S_{1}(\lambda)) < \infty.$从而(ⅰ)成立.

同理, ${\cal A}-\lambda$是右Fredholm算子当且仅当$\left(\begin{array}{cc} S_{1}(\lambda) ~ & 0 \\ 0 ~~& D-\lambda \\ \end{array} \right)$是右Fredholm算子.因为$\beta(D-\lambda)=0$,所以$\beta(\left(\begin{array}{cc} S_{1}(\lambda) ~~& 0 \\ 0~~ & D-\lambda \\ \end{array} \right)) < \infty$当且仅当$\beta(S_{1}(\lambda)) < \infty$.从而(ⅱ)成立.结论证毕.

注4.1  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times{\cal H}_{2}$上的有界线性算子,则对任意$\lambda\in\rho(A)$,

(ⅰ)${\cal A}-\lambda$是左Fredholm算子当且仅当$D-\lambda-C(A-\lambda)^{-1}B$是左Fredholm算子;

(ⅱ)${\cal A}-\lambda$是右Fredholm算子当且仅当$D-\lambda-C(A-\lambda)^{-1}B$是右Fredholm算子.

推论4.1  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times{\cal H}_{2}$上的有界线性算子.

(ⅰ)若$A-\lambda$是Fredholm算子, $\widetilde{A-\lambda}$$A-\lambda$生成的双射, $\lambda\in\rho(D)$,且$\|B(D-\lambda)^{-1}C\|\leq\|(\widetilde{A-\lambda})^{-1}\|^{-1}$,则${\cal A}-\lambda$是Fredholm算子;

(ⅱ)若$\lambda\in(\rho(A)\cap\rho(D))$,且$\|B(D-\lambda)^{-1}C\|\leq\|(\widetilde{A-\lambda})^{-1}\|^{-1}$,则${\cal A}-\lambda$是Fredholm算子.

  (ⅰ)对$\lambda\in\rho(D)$,根据定理4.1知${\cal A}-\lambda$是Fredholm算子当且仅当$A-\lambda-B(D-\lambda)^{-1}C$是Fredholm算子.因为$A-\lambda$是Fredholm算子,并且$\|B(D-\lambda)^{-1}C\|\leq\|(\widetilde{A-\lambda})^{-1}\|^{-1}$,所以由引理2.2知$A-\lambda-B(D-\lambda)^{-1}C$是Fredholm算子.因此${\cal A}-\lambda$是Fredholm算子.

(ⅱ)对$\lambda\in(\rho(A)\cap\rho(D))$,则$A-\lambda$是双射.因此

$\begin{equation}(\widetilde{A-\lambda})(x_{0}, y_{0})=Ax_{0}, \end{equation} $

$\begin{equation}\|(\widetilde{A-\lambda})^{-1}\|=\|(A-\lambda)^{-1}\|. \end{equation} $

从而

$\begin{equation}\|B(D-\lambda)^{-1}C\|\leq\|(A-\lambda)^{-1}\|^{-1} =\|(\widetilde{A-\lambda})^{-1}\|^{-1}. \end{equation}$

由(ⅰ)知${\cal A}-\lambda$是Fredholm算子.结论证毕.

注4.2  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times{\cal H}_{2}$上的有界线性算子.

(ⅰ)若$\lambda\in\rho(A)$, $D-\lambda$是Fredholm算子, $\widetilde{D-\lambda}$$D-\lambda$生成的双射,且$\|C(A-\lambda)^{-1}B\|\leq\|(\widetilde{D-\lambda})^{-1}\|^{-1}$,则${\cal A}-\lambda$是Fredholm算子;

(ⅱ)若$\lambda\in(\rho(A)\cap\rho(D))$,且$\|C(A-\lambda)^{-1}B\|\leq\|(\widetilde{D-\lambda})^{-1}\|^{-1}$,则${\cal A}-\lambda$是Fredholm算子.

推论4.2  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times{\cal H}_{2}$上的有界线性算子,则对任意$\lambda\in \rho(D)$,

(ⅰ) ${\cal A}-\lambda$是左Weyl算子当且仅当$A-\lambda-B(D-\lambda)^{-1}C$是左Weyl算子;

(ⅱ) ${\cal A}-\lambda$是右Weyl算子当且仅当$A-\lambda-B(D-\lambda)^{-1}C$是右Weyl算子.

  对任意$\lambda\in\rho(D)$,有

$\begin{equation}\label{eq:4.02} {\cal A}-\lambda =\left( \begin{array}{cc} I~~ & B(D-\lambda)^{-1} \\ 0~~ & I \\ \end{array} \right) \left( \begin{array}{cc} S_{1}(\lambda) ~ & 0 \\ 0~~ & D-\lambda \\ \end{array} \right) \left( \begin{array}{cc} I~~& 0 \\ (D-\lambda)^{-1}C~~& I \\ \end{array} \right), \end{equation} $

其中$S_{1}(\lambda)=A-\lambda-B(D-\lambda)^{-1}C$.根据定理4.1知${\cal A}-\lambda$是左Fredholm算子当且仅当$A-\lambda-B(D-\lambda)^{-1}C$是左Fredholm算子.

注意到(4.5)式中第一和最后一个算子矩阵是双射.因此

$\begin{equation}ind({\cal A}-\lambda)=ind \left( \begin{array}{cc} S_{1}(\lambda) ~~& 0 \\ 0 ~~& D-\lambda \\ \end{array} \right)=ind(S_{1}(\lambda))+ind(D-\lambda)).\end{equation} $

因为$\lambda\in\rho(D)$,并且$ind(D-\lambda)=0$,所以

$\begin{equation}ind({\cal A}-\lambda)=ind(S_{1}(\lambda)). \end{equation}$

从而(ⅰ)成立. (ⅱ)的证明与(ⅰ)相似.结论证毕.

注4.3  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times{\cal H}_{2}$上的有界线性算子,则对任意$\lambda\in \rho(A)$,

(ⅰ) ${\cal A}-\lambda$是左Weyl算子当且仅当$D-\lambda-C(A-\lambda)^{-1}B$是左Weyl算子;

(ⅱ) ${\cal A}-\lambda$是右Weyl算子当且仅当$D-\lambda-C(A-\lambda)^{-1}B$是右Weyl算子.

定理4.2  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times{\cal H}_{2}$上的有界线性算子,那么

(ⅰ) $\rho(D)\cap\sigma_{e}({\cal A})=\rho(D)\cap\{\lambda\in{\Bbb C} : A-\lambda-B(D-\lambda)^{-1}C$不是Fredholm算子};

(ⅱ) $\rho(D)\cap\sigma_{w}({\cal A})=\rho(D)\cap\{\lambda\in{\Bbb C} : A-\lambda-B(D-\lambda)^{-1}C$不是Weyl算子}.

  对$\lambda\in(\rho(D)\cap\sigma_{e}({\cal A}))$,得到

$\begin{equation}\label{eq:4.4} {\cal A}-\lambda =\left( \begin{array}{cc} I ~~& B(D-\lambda)^{-1} \\ 0 ~~& I \\ \end{array} \right) \left( \begin{array}{cc} S_{1}(\lambda) ~~& 0 \\ 0 ~~& D-\lambda \\ \end{array} \right) \left( \begin{array}{cc} I~~& 0 \\ (D-\lambda)^{-1}C~~& I \\ \end{array} \right), \end{equation}$

其中$S_{1}(\lambda)=A-\lambda-B(D-\lambda)^{-1}C$.

利用定理4.1知${\cal A}-\lambda$是Fredholm算子当且仅当$S_{1}(\lambda)$是Fredholm算子.因此(ⅰ)成立.

因为$\lambda\in\rho(D)$,所以

$\begin{equation}ind({\cal A}-\lambda)=ind(S_{1}(\lambda)). \end{equation}$

因此(ⅱ)成立.结论证毕.

注4.4  设${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \\ \end{array} \right)$${\cal H}_{1}\times{\cal H}_{2}$上的有界线性算子,那么

(ⅰ) $\rho(A)\cap\sigma_{e}({\cal A})=\rho(A)\cap\{\lambda\in{\Bbb C} : D-\lambda-C(A-\lambda)^{-1}B$不是Fredholm算子};

(ⅱ) $\rho(A)\cap\sigma_{w}({\cal A})=\rho(A)\cap\{\lambda\in{\Bbb C} : D-\lambda-C(A-\lambda)^{-1}B$不是Weyl算子}.

例4.1  设$A, B, C, D\in B(l^{2})$定义为

其中$\lim \alpha_{n}=0.$考虑有界线性算子矩阵${\cal A}=\left(\begin{array}{cc} A~~&B \\ C~~&D \end{array} \right).$

直接计算得到$\sigma(A)=\sigma_{e}(A)=\sigma_{w}(A)=\{0\}$, $\sigma(D)=\sigma_{e}(D)=\sigma_{w}(D)=\{0, 1\}$.因为

$\begin{equation}\lim\alpha_{n}=0, \end{equation} $

所以$C(A-\lambda)^{-1}B$是紧算子,从而

$\begin{equation}\{\lambda\in{\Bbb C} : D-\lambda-C(A-\lambda)^{-1}B不是{\rm{Fredholm}}算子\}=\{1\}. \end{equation}$

根据注4.4知$\sigma_{e}({\cal A})=\sigma_{w}({\cal A})=\{1\}$.

参考文献

阿拉坦仓, 张鸿庆, 钟万勰.

一类偏微分方程的Hamilton正则表示

力学学报, 1999, 31 (3): 347- 357

DOI:10.3321/j.issn:0459-1879.1999.03.011      [本文引用: 1]

Alatancang , Zhang H Q , Zhong W X .

The canonical Hamiltonian representations in a class of partial differential equation

Acta Mechanica Sinica, 1999, 31 (3): 347- 357

DOI:10.3321/j.issn:0459-1879.1999.03.011      [本文引用: 1]

阿拉坦仓, 海国君.

一类无穷维Hamilton算子的本质谱及其应用

数学物理学报, 2013, 33A (5): 984- 992

URL    

Alatancang , Hai G J .

The essential spectrum for a class of infinite dimensional Hamiltonian operator and its applications

Acta Math Sci, 2013, 33A (5): 984- 992

URL    

王华, 阿拉坦仓, 黄俊杰.

无穷维Hamilton算子特征值的代数指标

数学物理学报, 2011, 31A (5): 1266- 1272

URL    

Wang H , Alatancang , Huang J J .

Algebraic index of eigenvalues of infinite dimensional Hamiltonian operators

Acta Math Sci, 2011, 31A (5): 1266- 1272

URL    

侯国林, 阿拉坦仓.

一类无穷维Hamilton算子的谱

内蒙古大学学报(自然科学版), 2007, 38 (3): 247- 251

URL    

Hou G L , Alatancang .

On the spectra for a class of infinite Hamiltonian operators

Journal of Inner Mongolia University (Natural Science Edition), 2007, 38 (3): 247- 251

URL    

吴德玉, 阿拉坦仓.

无穷维Hamilton算子特征函数系的Cauchy主值意义下的完备性

中国科学A辑(数学), 2008, 38 (8): 904- 912

URL     [本文引用: 1]

Wu D Y , Alatancang .

Completeness in the sense of Cauchy proncipal value of the eigenfunction systems of infinite dimensional Hamiltonian operator

Science in China Series A-Mathematics, 2008, 38 (8): 904- 912

URL     [本文引用: 1]

Du H K , Pan J .

Perturbation of spectrum of $2 \times 2$ operator matrices

Proc Amer Math Soc, 1994, 121 (3): 761- 766

[本文引用: 1]

Han J K , Lee HY , Lee W Y .

Invertible completions of $2\times2$ upper triangular operator matrices

Proc Amer Math Soc, 2000, 128: 119- 123

DOI:10.1090/S0002-9939-99-04965-5      [本文引用: 1]

Zerouali E H , Zguitti H .

Perturbation of spectra of operator matricess and local spectral theory

J Math Anal Appl, 2006, 324: 992- 1005

DOI:10.1016/j.jmaa.2005.12.065      [本文引用: 1]

Djordjević S V , Zguitti H .

Essential point spectra of operator matrices trough local spectral theory

J Math Anal Appl, 2008, 338: 285- 291

DOI:10.1016/j.jmaa.2007.05.031     

Bai Q M , Huang J J , Chen A .

Weyl type theorems of $2\times2$ upper triangular operator matrices

J Math Anal Appl, 2016, 434: 1065- 1076

DOI:10.1016/j.jmaa.2015.09.061      [本文引用: 1]

Aienia P. Fredholm and Local Spectral Theory with Applications to Multipliers. Dordrecht: Kluwer Academic Publishers, 2004

Huang J J , Huang Y , Wang H .

Closed range and Fredholm properties of upper-triangular operator matrices

Annals of Functional Analysis, 2015, 6 (3): 42- 52

Duggal B P .

Browder and Weyl spectra of upper triangular operator matrices

Filomat, 2010, 24 (2): 111- 130

DOI:10.2298/FIL1002111D      [本文引用: 1]

Gohberg I C, Goldberg S, Kaashoek M A. Class of Linear Operators I. Basel: Birkhäuser, 1990

[本文引用: 4]

/