数学物理学报, 2018, 38(5): 893-902 doi:

论文

变号深阱位势分数阶Schrödinger方程非平凡解的存在性和集中性

王文波,1, 李全清,2

Existence and Concentration of Nontrivial Solutions for the Fractional Schrödinger Equations with Sign-Changing Steep Well Potential

Wang Wenbo,1, Li Quanqing,2

通讯作者: 李全清, E-mail: shili06171987@126.com

收稿日期: 2017-07-28  

基金资助: 云南省应用基础研究青年项目和红河学院科研基金博士专项项目.  XJ17B11

Received: 2017-07-28  

Fund supported: the Yunnan Province Applied Basic Research for Youths and Honghe University Doctoral Research Program.  XJ17B11

作者简介 About authors

王文波,E-mail:wenbowangmath@163.com , E-mail:wenbowangmath@163.com

摘要

考虑分数阶Schrödinger方程

非平凡解的存在性和集中性,其中$\lambda>0$, $s\in(0, 1)$, $N>2s$, $2<q<p<2_{s}^{\ast}$ ($2_{s}^{\ast}=\frac{2N}{N-2s}$), $P\in L^{\infty}$有正的下界, $Q\in L^{\infty}$可正可负或变号, $V$是深势阱位势, $V_{0}\in L^{\infty}$.$\lambda$充分大时,此方程存在非平凡解.进一步,如果$V(x)\geq0$,其解序列拥有某种集中现象.特别地,对于解的存在性, $V$允许变号.

关键词: 分数阶Schrödinger方程 ; 势阱位势 ; 变号位势 ; 集中性

Abstract

Consider the following fractional Schrödinger equation

where $\lambda>0$, $s\in(0, 1)$, $N>2s$, $2<q<p<2_{s}^{\ast}$ ($2_{s}^{\ast}=\frac{2N}{N-2s}$), $P\in L^{\infty}$ is positive, $Q\in L^{\infty}$ may be positive, sign-changing or negative, $V$ is steep well potential, and $V_{0}\in L^{\infty}$. When $\lambda$ is large, the existence of nontrivial solutions is obtained via variational methods. Furthermore, if $V(x)\geq0$, concentration results are also obtained. In particular, the potential $V$ is allowed to be sign-changing for the existence.

Keywords: Fractional Schrödinger equations ; Steep well potential ; Sign-changing potential ; Concentration

PDF (373KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王文波, 李全清. 变号深阱位势分数阶Schrödinger方程非平凡解的存在性和集中性. 数学物理学报[J], 2018, 38(5): 893-902 doi:

Wang Wenbo, Li Quanqing. Existence and Concentration of Nontrivial Solutions for the Fractional Schrödinger Equations with Sign-Changing Steep Well Potential. Acta Mathematica Scientia[J], 2018, 38(5): 893-902 doi:

1 引言主和要结果

该文致力于研究如下的分数阶Schrödinger方程

$ \begin{equation} (-\Delta)^{s}u+\lambda V(x)u+V_{0}(x)u=P(x)|u|^{p-2}u+Q(x)|u|^{q-2}u, ~~~~~x\in {\Bbb R}^{N}, \end{equation}$

其中$\lambda$是正参数, $0<s<1$, $N>2s$, $2<q<p<2_{s}^{\ast}$ ($2_{s}^{\ast}=\frac{2N}{N-2s}$), $(-\Delta)^{s}u$是分数阶拉普拉斯算子.分数阶拉普拉斯可以理解为稳定的Lévy扩散过程的无穷维算子,其也出现在等离子体中的不规则的扩散,火焰的扩散,液体的化学反应,种群动态.更多的物理背景,请参看文献[20, 23].

最近,分数阶Schrödinger方程

$ \begin{equation}(-\Delta)^{s}u+ V(x)u= f(x, u), ~~~~~x\in {\Bbb R}^{N}, \end{equation} $

引起了许多物理学家和数学家的兴趣.对于存在性,唯一性,正则性,渐进衰减性请参看文献[3, 7-8, 11, 14, 27, 28].另外,文献[2, 9, 26]研究了有界区域的分数阶方程.文献[9]研究了结点解.通过$s$ -调和延拓,文献[8]把非局部问题转化为局部问题.

许多学者也在研究如下问题的半经典解

$ \begin{equation}\label{eq1.2}\varepsilon^{2s}(-\Delta)^{s}u+ V(x)u=f(x, u), ~~~~~x\in {\Bbb R}^{N}.\end{equation}$

在量子力学中,当$\varepsilon\rightarrow0$,方程(1.3)的解的存在性和集中现象很重要,见文献[1, 6, 10, 13, 15-18, 28-29].如果$f(x, u)=|u|^{p-2}u$, $\varepsilon^{2s}=\lambda^{-1}, v=\lambda ^{\frac{-1}{p-2}}u$,方程(1.3)同如下方程等价

然而,对于一般的$f$ (如$f(x, u)=|u|^{p-2}u+|u|^{q-2}u$, $p\neq q$),情况是不同的.受到上面提到文献的启发,结合文献[12],本文的主要目标是:研究当位势$V$变号, $\lambda$充分大时,问题(1.1)解的存在性和集中性.据我们所知,还没有文献研究方程(1.1), $V$变号,解的存在性和集中性.

为了陈述我们的结果,对$V_{0}$, $V$, $P$$Q$,我们做如下假设

$(V_{0})$$V_{0}\in L^{\infty}({\Bbb R}^{N})$并且$V_{0}:=\inf\limits_{x\in{\Bbb R}^{N}} V_{0}(x)>0$.

$(V_{1})$$V \in C ({\Bbb R}^{N}, {\Bbb R})$并且$V$下方有界.

$(V_{2})$存在$b>0$使得非空集合$\{x\in{\Bbb R}^{N}~ :~ V(x)< b\}$测度有限.

$(V_{3})$$\Omega=int V^{-1}(0)$非空,边界光滑并且$\overline{\Omega}=V^{-1}(0)$.

$(P)$$P(x)\in L^{\infty}({\Bbb R}^{N})$, $P_{0}:=\inf\limits_{x\in{\Bbb R}^{N}} P(x)>0$.

$(Q)$$Q(x)\in L^{\infty}({\Bbb R}^{N})$, $Q$变号或是负的并且$\{x\in{\Bbb R}^{N}~ :~ Q(x)\geq0\}$测度有限.

定理1.1  假设$(V_{0})-(V_{3})$, $(P)$$(Q)$成立, $2<q<p<2_{s}^{\ast}$并且$V$变号,则当$\lambda$充分大并且$\|V_{0}\|_{L^{\infty}}\leq C(\lambda)$时,问题(1.1)至少有一个非平凡解$u_{\lambda}$.

定理1.2  假设$(V_{0})-(V_{3})$, $(P)$$(Q)$成立, $2<q<p<2_{s}^{\ast}$并且$V(x)\geq0$,则当$\lambda$充分大并且$\|V_{0}\|_{L^{\infty}}\leq C(\lambda)$时,问题(1.1)至少有一个非平凡解$u_{\lambda}$.此外,在$H^{s}({\Bbb R}^{N})$中, $u_{\lambda}\mathop{\longrightarrow}\limits^{\lambda\rightarrow\infty} \bar{u}$,其中$\bar{u}$是如下方程的非平凡解

$\begin{equation}\label{eq1.6}\left\{\begin{array}{ll} (-\Delta)^{s}u+V_{0}(x)u=P(x)|u|^{p-2}u+Q(x)|u|^{q-2}u, &x\in \Omega, \\ u=0, &x\in \partial\Omega. \end{array}\right.\end{equation}$

注1.1  如果$Q$满足$Q(x)\in L^{\infty}({\Bbb R}^{N})$, $Q_{0}:=\inf\limits_{x\in{\Bbb R}^{N}} Q(x)>0$.定理1.1和1.2仍然成立.

位势$V(x)$满足$(V_{1})-(V_{3})$被文献[4]中的作者首次称为是深阱位势的.他们研究了非线性Schrödinger方程.我们也可参看文献[12, 32].在文献[19]中,作者研究了深阱位势的Schrödinger-Poisson方程.最近,文献[33]研究了带有变号深势阱位势的Schrödinger-Poisson方程.文献[20]和[34]研究了深阱位势的分数阶Schrödinger方程.但他们要求$V$是正的.本文结果不同于文献[33],我们需要重新建立分数阶Schrödinger方程的特征值问题.并且在研究过程中遇到的困难是空间的嵌入缺乏紧性.我们通过证明临界值$c_{\lambda}$关于$\lambda$一致有界去恢复紧性.我们需要更精细的估计(参看引理3.4).这篇文章最初的想法是研究当$V$变号,解的集中现象,然而失败了.我们想证明$\{u_{\lambda}\}$$E$中有界, $V(x)\geq0$这个条件在(4.1)式中似乎很重要($E$的定义请看第2部分).

2 预备知识

记集合$A$的Lebesgue测度为$|A|$. $|\cdot| _{p}$$L^{p}({\Bbb R}^{N} )$的范数.首先,我们回顾$(-\Delta)^{s}:{\cal S}\rightarrow L^{2}({{\Bbb R}^{N}})$定义如下

其中${\cal S}$是速降$C^{ \infty}$ Schwartz函数空间.

分数阶Sobolev空间$H ^{s}({\Bbb R}^{N})$定义为

$H ^{s}({\Bbb R}^{N})$中定义内积

和范数

其是一个Hilbert空间.

$V^{\pm}(x)=\max\{\pm V(x), 0\}$,则$V(x)=V^{+}(x)-V^{-}(x)$.

赋予内积和范数

对于固定的$\lambda$,记

$E_{\lambda}=(E, \|\cdot\|_{\lambda})$.

引理2.1  当$p\in[2, 2^{\ast}_{s}]$时, $E\hookrightarrow H^{s}({\Bbb R}^{N})\hookrightarrow L^{p}({\Bbb R}^{N})$连续.此外,当$p\in[2, 2^{\ast}_{s})$时, $E\hookrightarrow L^{p}({\Bbb R}^{N})$是局部紧的.

  注意到$(V_{2})$, $V^{+}(x)\not\equiv0$.

因此

由Hölder不等式和文献[30]中式子$(4)$,结合$ |B(R)|<\infty$,我们得

类似的,有

因此$E\hookrightarrow H^{s}({\Bbb R}^{N})$.众所周知$H^{s}({\Bbb R}^{N})\hookrightarrow L^{p}({\Bbb R}^{N})$连续.紧嵌入可由文献[5,引理3.2]得到.

易知问题(1.1)的能量泛函为

$\begin{eqnarray}\label{eq2.1} \nonumber I_{\lambda}(u)&=&\frac{1}{2}\int_{{\Bbb R}^{N}}\bigg(|(-\Delta)^{\frac{s}{2}}u|^{2}+\lambda V(x)u^{2}+V_{0}(x)u^{2}\bigg){\rm d}x\\ &&-\frac{1}{p}\int_{{\Bbb R}^{N}}P(x)|u|^{p}{\rm d}x-\frac{1}{q}\int_{{\Bbb R}^{N}}Q(x)|u|^{q}{\rm d}x. \end{eqnarray}$

显然, $I_{\lambda}$$E$上是$C^{1}$的. $u \in H ^{s}({\Bbb R}^{N})$是问题(1.1)的弱解当且仅当$ I'_{\lambda}(u)=0$.由于$V$变号,二次型

是不定的.沿用文献[33]的想法,记

$\begin{equation}\label{eq2.2} F=\overline{D}^{\|\cdot\|_{\lambda}}=\overline{\{u\in E~:~{\rm supp}u \subset V^{-1}([0, \infty])\}}^{\|\cdot\|_{\lambda}}, \end{equation}$

$F$$D$在范数$\|\cdot\|_{\lambda}$的完备化.根据文献[24,定理12.4],存在闭子空间$M$使得$E_{\lambda}=F\oplus M$.如果$V(x)\geq0$,则$E=F$.我们可以直接跳到第4部分.

考虑双线性型

及特征值问题

$\begin{equation}\label{eq2.3} (-\Delta)^{s}u+\lambda V^{+}(x)u=\alpha\lambda V^{-}(x)u, ~~~u\in M.\end{equation}$

$A:={\rm supp}V^{-}$,由$(V_{2})$,得$|A|<\infty$.易证存在$C>0$,使得对任意的$u\in M$

$\begin{equation}\label{eq2.4} \int_{{\Bbb R}^{N}}\bigg(|(-\Delta)^{\frac{s}{2}}u|^{2}+\lambda V^{+}(x)u^{2}\bigg){\rm d}x\geq C\int_{A}\lambda V^{-}(x)u^{2}{\rm d}x.\end{equation}$

$ \begin{equation}\label{eq2.5} Q(u):=\int_{{\Bbb R}^{N}}\bigg(|(-\Delta)^{\frac{s}{2}}u|^{2}+\lambda V^{+}(x)u^{2}\bigg){\rm d}x. \end{equation} $

引理2.2  $\alpha_{1}(\lambda)=\inf\limits_{0\neq u\in M}\frac{Q(u)}{\int_{A}\lambda V^{-}(x)u^{2}{\rm d}x}>0$可达并且$\alpha_{1}(\lambda)$是(2.3)式的最小特征值.

  证明类似于文献[22, p74].不同之处在于$M$不是全空间,但很幸运$M$是凸闭的.设$\{u_{k}\}\subset M$是极小化序列.由于$M$是凸闭的,存在$u\in M$使得在$E_{\lambda}$中, $u_{k}\rightharpoonup u$.结合引理2.1嵌入的紧性,类似于文献[22]的证明易知结论成立.

类似于文献[22, p80], $\lambda>0$固定,我们定义$\alpha_{j}(\lambda)$$ (j=2, 3, \cdots ).$我们有如下性质.

性质2.1  每一特征值的特征函数空间是有限维的.

性质2.2  $\alpha_{j}(\lambda)\mathop{\longrightarrow}\limits^{j\rightarrow\infty}\infty$.

性质2.3  不同特征值对应的特征函数在$E_{\lambda}$中正交.

引理2.3  每一个固定的$j$, $\alpha_{j}(\lambda)\mathop{\longrightarrow}\limits^{\lambda\rightarrow\infty}0$.

  不妨设$j\geq2$.$u_{i}\in M$$\alpha_{i}(\lambda)$相应的特征函数$(i=1, 2, \cdots , j-1).$$V_{j-1}={\rm span}\{u_{i}, i=1, 2, \cdots , j-1\}$. $V_{j-1}^{\perp}$$V_{j-1}$$L^{2}$的正交补.设$u\in C^{\infty}_{0}({\Bbb R}^{N})$使得${\rm supp}u\subset {\rm supp}V^{-}$, ${\rm supp}u\cap {\rm supp}u_{i}=\emptyset$, $1\leq i\leq j-1.$这意味着

引理2.3证毕.

根据引理2.3,存在$\Lambda>0$使得当$\lambda>\Lambda$

$\hat{E}_{\lambda}:={\rm span}\{e_{j}, \alpha_{j}(\lambda)\leq1\}$

非空并且$a_{\lambda}(u, u)$$\hat{E}_{\lambda}$上是负半定的,其中$e_{j}$$\alpha_{j}(\lambda)$相应的特征函数.记$E^{+}_{\lambda}:={\rm span}\{e_{j}, \alpha_{j}(\lambda)>1\}$.根据性质2.1和性质2.3, $E_{\lambda}=M\oplus F=\hat{E}_{\lambda}\oplus E^{+}_{\lambda}\oplus F$并且dim$\hat{E}_{\lambda}<\infty$.

3 定理1.1的证明

我们将证明$I_{\lambda}$满足环绕定理[31,定理2.12]中的环绕几何结构和$(C)_{c}$条件.

引理3.1  对于固定的$\lambda$,存在$\rho_{\lambda}>0$$\kappa_{\lambda}>0$使得当$u\in E ^{+}_{\lambda}\oplus F$, $\|u\|_{\lambda}=\rho_{\lambda}$时,有

  由$E^{+}_{\lambda}$的定义,存在$\delta_{\lambda}$使得

因此,当$u=v+w\in E^{+}_{\lambda}\oplus F$时,利用Sobolev嵌入,我们得

$ \begin{eqnarray} \nonumber I_{\lambda}(u) &=& \frac{1}{2}a_{\lambda}(v, v)+\frac{1}{2}a_{\lambda}(w, w)+\frac{1}{2}\int_{{\Bbb R}^{N}}V_{0}(x)u^{2}{\rm d}x\\ \nonumber&&-\frac{1}{p}\int_{{\Bbb R}^{N}}P(x)|u|^{p}{\rm d}x-\frac{1}{q}\int_{{\Bbb R}^{N}}Q(x)|u|^{q}{\rm d}x\\ &\geq& \frac{1}{2}\min\{\delta_{\lambda}, 1\}\| u \|^{ 2}_{\lambda}-C_{1} \|u\|_{\lambda}^{p}-C_{2}\|u\|_{\lambda}^{q}.\end{eqnarray}$

选取$\varepsilon>0$, $\rho_{\lambda}>$0$\kappa_{\lambda}>0$充分小易知结论成立.

$(V_{3})$,我们可以取$e_{0}\in C_{0}^{\infty}(\Omega)$,则$e_{0}\in F$.

引理3.2  对于固定的$\lambda$,存在$R_{\lambda}>0$使得

其中$Q=\{u=v+te_{0}~:~v\in\hat{E}_{\lambda}, t\geq0, \|u\|_{\lambda}\leq R_{\lambda}\}$.

  根据$(P)$$(Q)$,存在$C_{1}>0, C_{2}>0$使得

如果$u=v+w\in\hat{E}_{\lambda}\oplus Re_{0}$,注意到

结合有限维空间中所有范数等价和$q<p$,我们得

因此,存在$R_{\lambda}>0$使得当$u\in\hat{E}_{\lambda}\oplus Re_{0}$并且$\|u\|_{\lambda}=R_{\lambda}$时, $I_{\lambda}(u)\leq0$,

如果$u\in \hat{E}_{\lambda}$,则$I_{\lambda}(u)\leq\frac{1}{2}\int_{{\Bbb R}^{N}}V_{0}(x)u^{2}{\rm d}x+C_{3}\|u\|_{\lambda}^{q}-C_{4}\|u\|_{\lambda}^{p}$,易知结论成立.

由引理3.1和引理3.2, $I_{\lambda}$存在$(C)_{c}$序列$\{u_{n}\}\subset E_{\lambda}$,即

$ \begin{equation}\label{eq3.2} I_{\lambda}(u_{n})\rightarrow c, ~~~~~~~(1+\|u_{n}\|_{\lambda})I'_{\lambda}(u_{n})\rightarrow 0. \end{equation}$

引理3.3  $\{u_{n}\}$$E_{\lambda}$中有界(依赖于$\lambda)$.

  对充分大的$n$,有

$ \begin{eqnarray}\label{eq3.3} \nonumber I_{\lambda}(u_{n})-\frac{1}{q}\langle I'_{\lambda}(u_{n}), u_{n}\rangle&=&\bigg(\frac{1}{2}-\frac{1}{q}\bigg)\|u_{n}\|_{\lambda}^{2} -\bigg(\frac{1}{2}-\frac{1}{q}\bigg)\int_{{\Bbb R}^{N}}\lambda V^{-}(x)u_{n}^{2}{\rm d}x\\ \nonumber&&+\bigg(\frac{1}{2}-\frac{1}{q}\bigg)\int_{{\Bbb R}^{N}}V_{0}(x)u_{n}^{2}{\rm d}x+\bigg(\frac{1}{q}-\frac{1}{p}\bigg)\int_{{\Bbb R}^{N}}P(x)|u_{n}|^{p}{\rm d}x\\ &\leq&c+1.\end{eqnarray}$

结合条件$(V_{1})$$\|u_{n}\|_{\lambda}^{2}\leq C_{1}\int_{{\Bbb R}^{N}}u_{n}^{2}{\rm d}x+ C_{2}$.从而只需证明$\{u_{n}\}$$L^{2}({\Bbb R}^{N})$中有界即可.事实上,若$\int_{{\Bbb R}^{N}}u_{n}^{2}{\rm d}x\mathop{\longrightarrow}\limits^{n\rightarrow\infty}\infty$,记$v_{n}=\frac{u_{n}}{|u_{n}|_{2}}$,则$|v_{n}|_{2}=1$.

一方面,由(3.3)式知

$\|v_{n}\|_{\lambda}^{2}+\int_{{\Bbb R}^{N}}V_{0}(x)v_{n}^{2}{\rm d}x-\int_{{\Bbb R}^{N}}\lambda V^{-}(x)v_{n}^{2}{\rm d}x\leq\frac{C}{|u_{n}|^{2}_{2}}.$

因此$\{\|v_{n}\|_{\lambda}^{2}\}$是有界的并且

$ \int_{{\Bbb R}^{N}}V(x)v_{n}^{2}{\rm d}x\leq\frac{C}{|u_{n}|^{2}_{2}}\mathop{\longrightarrow}\limits^{n\rightarrow\infty}0. $

$E_{\lambda}$自反,在子列意义下可设在$E_{\lambda}$$v_{n}\rightharpoonup v$.

另一方面,由(3.4)式和嵌入的紧性知$v=0$.因此

这与(3.5)式矛盾.

引理3.4  $c_{\lambda}$关于$\lambda$一致有界.

  由文献[31,定理2.12], $c_{\lambda}\in[\kappa_{\lambda}, \sup\limits _{u\in Q}I _{\lambda} (u)]$,我们只需证明$\sup\limits _{u\in Q}I _{\lambda} (u)$有与$\lambda$无关的正上界.设

显然, $I_{\lambda}(u)\leq J_{\lambda}(u)$.

任给$\eta>0$,存在$r_{\eta}>0$,使得

$u=v+w\in\hat{E}_{\lambda}\oplus Re_{0}$.我们得

$\begin{eqnarray}\label{eq3.6} \nonumber J_{\lambda}(u)&\leq& \frac{1}{2}\int_{{\Bbb R}^{N}}|(-\Delta)^{\frac{s}{2}}w|^{2}{\rm d}x+\frac{1}{2}\int_{{\Bbb R}^{N}}V_{0}(x)u^{2}{\rm d}x -\frac{1}{2}\eta\int_{\Omega}u^{2}{\rm d}x \\ \nonumber&& +\int_{\{x\in\Omega~:~|u(x)|\leq r_{\eta}\}}\bigg(\frac{1}{2}\eta u^{2}-C_{1}|u|^{q}\bigg){\rm d}x\\ &\leq&\frac{1}{2}\int_{{\Bbb R}^{N}}|(-\Delta)^{\frac{s}{2}}w|^{2}{\rm d}x+C\|V_{0}\|_{L^{\infty}}\|u\|^{2}_{\lambda}-\frac{\eta}{2}\int_{\Omega}u^{2}{\rm d}x+C(\eta). \end{eqnarray}$

由于$e_{0}\in C_{0}^{\infty}(\Omega)$,故

$\begin{equation}\label{eq3.7} \int_{{\Bbb R}^{N}}|(-\Delta)^{\frac{s}{2}}w|^{2}{\rm d}x =a_{\lambda}(u, w)=\int_{\Omega}u(-\Delta)^{s}w{\rm d}x\leq\|(-\Delta)^{s}w \|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)}.\end{equation} $

$(\varphi_{k}, \mu_{k})$$-\Delta$$\Omega$中带有Dirichlet边界条件的特征函数和特征值.根据文献[2,引理3.4,引理3.5],我们得

$\|(-\Delta)^{s}w\|_{L^{2}(\Omega)}=(\Sigma_{k=1}^{\infty}a^{2}_{k}\mu^{s}_{k})^{\frac{1}{2}}<\infty, $

其中$a_{k}=\int_{\Omega}w\varphi_{k}{\rm d}x$.$0<\mu_{1}\leq\mu_{2}\cdot\cdot\cdot\leq\mu_{k}\cdot\cdot\cdot$$\mu_{k}\rightarrow\infty$,我们有

$\|(-\Delta)^{\frac{s}{2}}w\|_{L^{2}(\Omega)}=(\Sigma_{k=1}^{\infty}a^{2}_{k}\mu^{\frac{s}{2}}_{k})^{\frac{1}{2}}<\infty. $

因此$\|(-\Delta)^{s}w\|_{L^{2}(\Omega)}\leq C_{0}\|(-\Delta)^{\frac{s}{2}}w\|_{L^{2}(\Omega)}$ ($C_{0}$只依赖于$e_{0}$).注意到(3.7)-(3.9)式,结合Young不等式,易证

$\int_{{\Bbb R}^{N}}|(-\Delta)^{\frac{s}{2}}w|^{2}{\rm d}x\leq \frac{2}{\eta}C^{2}_{0}\|(-\Delta)^{\frac{s}{2}}w\|^{2}_{L^{2}(\Omega)}+\frac{\eta}{2}\|u\|^{2}_{L^{2}(\Omega)}.$

$\eta\geq4C_{0}^{2}$,则$\int_{{\Bbb R}^{N}}|(-\Delta)^{\frac{s}{2}}w|^{2}{\rm d}x\leq\eta\|u\|^{2}_{L^{2}(\Omega)}$.如果$\|V_{0}\|_{L^{\infty}}\leq\frac{2}{CR_{\lambda}^{2}}$,根据(3.6)式,我们有$J_{\lambda}(u)\leq C(\eta)+1$.

引理3.5  任给$M>0$,存在$\Lambda=\Lambda(M)>0$使得$(C)_{c}$序列$\{u_{n}\}$满足,在$E_{\lambda}$中, $u_{n} \rightharpoonup u$,其中$u$$I_{\lambda}$的非平凡临界点或者$I_{\lambda}$满足$(C)_{c}$条件如果$c\leq M$.

  由引理3.3,在子列意义下,在$E_{\lambda}$中, $u_{n} \rightharpoonup u$.由于$V$变号,我们需要分为两种情形:

情形(ⅰ) $I_{\lambda}(u)<0$;

情形(ⅱ) $I_{\lambda}(u)\geq0$.

如果(ⅰ)发生,则$u$显然是非平凡解.如果(ii)发生,我们将证明在$E_{\lambda}$中, $u_{n} \rightarrow u$.事实上,记$v_{n}=u_{n}-u$.根据$(V_{2})$,有

$\int_{{\Bbb R}^{N}} v^{2}_{n}{\rm d}x=\int_{\{x~:~V(x)\geq b\}}v^{2}_{n}{\rm d}x+\int_{\{x~:~V(x)< b\}} v_{n}{\rm d}x\leq\frac{1}{\lambda b}\|v_{n}\|^{2}_{\lambda}+o_{n}(1).$

这样我们利用内插不等式和Sobolev不等式得

$|v_{n}|_{p}\leq|v_{n}|^{\sigma}_{2}|v_{n}|^{1-\sigma}_{2^{\ast}_{s}}\leq d|v_{n}|^{\sigma}_{2}|(-\Delta)^{\frac{1}{2}}v_{n}|_{2}^{1-\sigma} \leq d(\lambda b)^{-\frac{\sigma}{2}}\|v_{n}\|_{\lambda}+o_{n}(1), $

其中$0<\sigma<1$并且常数$d$$\lambda$无关.根据Brézis-Lieb引理我们得

$I_{\lambda}(v_{n})=I_{\lambda}(u_{n})-I_{\lambda}(u)+o_{n}(1), ~~~I_{\lambda}'(v_{n})=I_{\lambda}'(u_{n})+o_{n}(1). $

简单计算易知

因此

$|v_{n}|^{p}_{p}\leq\frac{Mpq}{P_{0}(p-q)}+o_{n}(1).$

注意到条件$(Q)$$\int_{{\Bbb R}^{N}}\lambda V^{-}(x)v^{2}_{n}{\rm d}x=o_{n}(1)$,结合(3.11)-(3.14)式,我们得

$\begin{eqnarray}\label{eq3.16} \nonumber o_{n}(1)&=&\langle I_{\lambda}'(v_{n}), v_{n}\rangle\geq \|v_{n}\|^{2}_{\lambda}-C_{1}|v_{n}|^{p}_{p}+o_{n}(1)\\ &\geq& \bigg(1-C_{1}\bigg(\frac{Mpq}{P_{0}(p-q)}\bigg)^{\frac{p-2}{p}}\frac{d^{2}}{(\lambda b)^{\sigma}}\bigg)\|v_{n}\|^{2}_{\lambda}+o_{n}(1).\end{eqnarray}$

选择$\lambda$充分大,我们得在$E_{\lambda}$$v_{n}\rightarrow0$.

4 定理1.2的证明

根据定理1.2的假设,我们知$I_{\lambda}$具有山路几何结构.借用文献[25,定理2.2], $I_{\lambda}$存在一个$(C)_{c}$序列.注意到$\hat{E_{\lambda}}=\{0\}$,其不影响引理3.3至引理3.5的结果.类似于引理3.3至引理3.5,当$\lambda$充分大时,我们获得$I_{\lambda}$有一个非平凡临界点$u_{\lambda}$并且$I_{\lambda}(u_{\lambda})\in[\kappa_{\lambda}, C_{0}]$,其中$\kappa_{\lambda}\geq0$依赖于$\lambda$$C_{0}$$\lambda$无关.记$u_{n}:=u_{\lambda_{n}}$.

步骤1  我们首先证明$\{u_{n}\}$$E$中有界.直接计算我们得

$c_{\lambda_{n}}=I_{\lambda_{n}}(u_{n})-\frac{1}{q}\langle I'_{\lambda_{n}}(u_{n}), u_{n}\rangle \geq \bigg(\frac{1}{2}-\frac{1}{q}\bigg)\|u_{n}\|_{\lambda_{n}}^{2}.$

由(4.1)式知$\{u_{n}\}$$E$中有界.在子列意义下,我们设在$E$$u_{n}\rightharpoonup \bar{u}$.

步骤2  $\bar{u}$是方程(1.4)的弱解.根据Fatou's引理,我们有

$\int_{{\Bbb R}^{N}}V(x)\bar{u}^{2}{\rm d}x\leq\liminf\limits_{n\rightarrow\infty}\int_{{\Bbb R}^{N}}V(x)\bar{u}_{n}^{2}{\rm d}x \leq\liminf\limits_{n\rightarrow\infty}\frac{\|u_{n}\|^{2}_{\lambda_{n}}}{\lambda_{n}}=0.$

因此,注意到$(V_{3})$, $\bar{u}=0$ a.e. ${\Bbb R}^{N}\setminus V^{-1}(0)$, $\bar{u}\in H_{0}^{s}(\Omega)$.任给$\varphi\in C_{0}^{\infty}(\Omega)$, $\langle I'_{\lambda_{n}}(u_{n}), \varphi\rangle =0$,易知$\bar{u}$是方程(1.4)的弱解.

步骤3  在$E$$u_{n}\rightarrow \bar{u}$并且$\bar{u}\neq0$.

类似于文献[21, 33]或[34].首先,易证在$L^{t}({\Bbb R}^{N})$$u_{n}\rightarrow \bar{u}$ ($2<t<2^{\ast}_{s}$).其次,结合

我们得

众所周知

因此,在$E$$u_{n}\rightarrow \bar{u}$.最后,当$n$充分大时,有

这蕴含了$\bar{u}\neq0$.

参考文献

Alves C O , Miyagaki O H .

Existence and concentration of solution for a class of fractional elliptic equation in ${{\mathbb{R}}^N}$ via penalization mehtod

Calc Var Partial Differential Equations, 2016, 55: 1- 19

DOI:10.1007/s00526-015-0942-y      [本文引用: 1]

Brändle C , Colorado E , de Pablo A , Sánchez U .

A concave-convex elliptic problem involving the fractional Laplacian

Proc Roy Soc Edinburgh Sect A, 2013, 143: 39- 71

DOI:10.1017/S0308210511000175      [本文引用: 2]

Barrios B , Colorado E , de Pablo A , Sánchez U .

On some critical problems for the fractional Laplacian operator

J Differential Equations, 2012, 252: 6133- 6162

DOI:10.1016/j.jde.2012.02.023      [本文引用: 1]

Bartsch T , Pankov A , Wang Z Q .

Nonlinear Schrödinger equations with steep potential well

Commun Contemp Math, 2001, 3: 549- 569

DOI:10.1142/S0219199701000494      [本文引用: 1]

Cheng M .

Bound state for the fractional Schrödinger equations with unbounded potential

J Math Phys, 2012, 53: 043507

DOI:10.1063/1.3701574      [本文引用: 1]

Chen G .

Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations

Nonlinearity, 2015, 28: 927- 949

DOI:10.1088/0951-7715/28/4/927      [本文引用: 1]

Cabré X , Sire Y .

Nonlinear equations for fractional Laplacians, Ⅰ:Regularity, maximum principles, and Hamiltonian estimates

Ann Inst H Poincaré Anal Non Linéeaire, 2014, 31: 23- 53

DOI:10.1016/j.anihpc.2013.02.001      [本文引用: 1]

Caffarelli L , Silvestre L .

An extension problems related to the fractional Laplacian

Comm Partial Differential Equations, 2007, 32: 1245- 1260

DOI:10.1080/03605300600987306      [本文引用: 2]

Chang X , Wang Z Q .

Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian

J Differential Equations, 2014, 256: 2965- 2992

DOI:10.1016/j.jde.2014.01.027      [本文引用: 2]

Chen G , Zheng Y .

Concentration phenomena for fractional nonlinear Schrödinger equations

Commun Pure Appl Anal, 2014, 13: 2359- 2376

DOI:10.3934/cpaa      [本文引用: 1]

do ó J M , Miyagaki O H , Squassina M .

Critical and subcritical fractional problems with vanishing potentials

Commun Contemp Math, 2016, 18: 1550063

DOI:10.1142/S0219199715500637      [本文引用: 1]

Ding Y , Szulkin A .

Bound states for semilinear Schrödinger equations with sign-changing potential

Calc Var Partial Differential Equations, 2007, 29: 397- 419

DOI:10.1007/s00526-006-0071-8      [本文引用: 2]

Davila J , del Pino M , Wei J .

Concentrating standing waves for the fractional nonlinear Schrödinger equation

J Differential Equations, 2014, 256: 858- 892

DOI:10.1016/j.jde.2013.10.006      [本文引用: 1]

Frank R , Lenzman E , Silvestre L .

Uniqueness of radial solutions for the fractional Laplacian

Commun Pure Appl Anal, 2016, 69: 1671- 1726

DOI:10.1002/cpa.v69.9      [本文引用: 1]

Fall M , Mahmoudi F , Valdinoci E .

Ground states and concentration phenomena for the fractional Schrödinger equation

Nonlinearity, 2015, 28: 1937- 1961

DOI:10.1088/0951-7715/28/6/1937      [本文引用: 1]

Figueiredo G , Sicilinao G .

A multiplicity results via Ljusternik-schnirelmann category and Morse theory for a fractional Schrödinger equation in RN

Nonlinear Differ Equ Appl, 2016, 23: 1- 22

DOI:10.1007/s00030-016-0354-5     

Guo Q , He X .

Semiclassical states for fractional Schrödinger equations with critical growth

Nonlinear Analysis, 2017, 151: 164- 186

DOI:10.1016/j.na.2016.12.004     

He X , Zou W .

Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities

Calc Var Partial Differential Equations, 2016, 55: 1- 39

DOI:10.1007/s00526-015-0942-y      [本文引用: 1]

Jiang Y , Zhou H S .

Schrödinger-Poisson system with steep potential well

J Differential Equations, 2011, 251: 582- 608

DOI:10.1016/j.jde.2011.05.006      [本文引用: 1]

Laskin N .

Fractional Schrödinger equations

Phys Rev E, 2002, 66: 056108

DOI:10.1103/PhysRevE.66.056108      [本文引用: 2]

Ledesma C T .

Existence and concentration of solutions for a nonlinear fractional Schrödinger equations with steep potential well

Commun Pure Appl Anal, 2016, 15: 535- 547

DOI:10.3934/cpaa      [本文引用: 1]

陆文端. 微分方程中的的变分法. 北京: 中国科学出版社, 2002

[本文引用: 3]

Lu W . Variational Methods in Partial Differential Equations. Beijing: Scientific Publishing House in China, 2002

[本文引用: 3]

Nezza E D , Palatucci G , Valdinoci E .

Hitchhiker's guide to the fractional Sobolev spaces

Bull Sci Math, 2012, 136: 521- 573

DOI:10.1016/j.bulsci.2011.12.004      [本文引用: 1]

Rudin W . Functional Analysis. Beijin: China Machine Press, 2004

[本文引用: 1]

Rabinowitz P H . Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence, RI: Amer Math Soc, 1986

[本文引用: 1]

Servadei R .

A critical fractional Laplace equation in resonant case

Topol Methods Nonlinear Anal, 2014, 43: 251- 267

[本文引用: 1]

Secchi S .

Ground state solutions for nonlinear fractional Schrödinger equations in ${{\mathbb{R}}^N}$

J Math Phys, 2013, 54: 031501

DOI:10.1063/1.4793990      [本文引用: 1]

Shang X , Zhang J .

Ground states for fractional Schrödinger equations with critical growth

Nonlinearity, 2014, 27: 187- 207

DOI:10.1088/0951-7715/27/2/187      [本文引用: 2]

Shang X , Zhang J , Yang Y .

On fractional Schrödinger equation in ${{\mathbb{R}}^N}$ with critical growth

J Math Phys, 2013, 54: 877- 895

URL     [本文引用: 1]

Teng K .

Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent

J Differential Equations, 2016, 261: 3061- 3106

DOI:10.1016/j.jde.2016.05.022      [本文引用: 1]

Willem M . Minimax Theorems. Boston: Birkhäuser Boston Inc, 1996

[本文引用: 2]

Wang Z , Zhou H S .

Ground state for nonlinear Schrödinger equation with sign-changing and vanishing potential

J Math Phys, 2011, 52: 113704

DOI:10.1063/1.3663434      [本文引用: 1]

Zhao L , Liu H , Zhao F .

Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential

J Differential Equations, 2013, 255: 1- 23

DOI:10.1016/j.jde.2013.03.005      [本文引用: 4]

Zhang J, Jiang W. Existence and concentration of solutions for a fractional Schrödinger equations with sublinear nonlinearity. 2015, arXiv: 1502.02221v1

[本文引用: 2]

/