1 |
Alves C O , Miyagaki O H . Existence and concentration of solution for a class of fractional elliptic equation in ${{\mathbb{R}}^N}$ via penalization mehtod. Calc Var Partial Differential Equations, 2016, 55: 1- 19
doi: 10.1007/s00526-015-0942-y
|
2 |
Brändle C , Colorado E , de Pablo A , Sánchez U . A concave-convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2013, 143: 39- 71
doi: 10.1017/S0308210511000175
|
3 |
Barrios B , Colorado E , de Pablo A , Sánchez U . On some critical problems for the fractional Laplacian operator. J Differential Equations, 2012, 252: 6133- 6162
doi: 10.1016/j.jde.2012.02.023
|
4 |
Bartsch T , Pankov A , Wang Z Q . Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3: 549- 569
doi: 10.1142/S0219199701000494
|
5 |
Cheng M . Bound state for the fractional Schrödinger equations with unbounded potential. J Math Phys, 2012, 53: 043507
doi: 10.1063/1.3701574
|
6 |
Chen G . Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations. Nonlinearity, 2015, 28: 927- 949
doi: 10.1088/0951-7715/28/4/927
|
7 |
Cabré X , Sire Y . Nonlinear equations for fractional Laplacians, Ⅰ:Regularity, maximum principles, and Hamiltonian estimates. Ann Inst H Poincaré Anal Non Linéeaire, 2014, 31: 23- 53
doi: 10.1016/j.anihpc.2013.02.001
|
8 |
Caffarelli L , Silvestre L . An extension problems related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32: 1245- 1260
doi: 10.1080/03605300600987306
|
9 |
Chang X , Wang Z Q . Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J Differential Equations, 2014, 256: 2965- 2992
doi: 10.1016/j.jde.2014.01.027
|
10 |
Chen G , Zheng Y . Concentration phenomena for fractional nonlinear Schrödinger equations. Commun Pure Appl Anal, 2014, 13: 2359- 2376
doi: 10.3934/cpaa
|
11 |
do ó J M , Miyagaki O H , Squassina M . Critical and subcritical fractional problems with vanishing potentials. Commun Contemp Math, 2016, 18: 1550063
doi: 10.1142/S0219199715500637
|
12 |
Ding Y , Szulkin A . Bound states for semilinear Schrödinger equations with sign-changing potential. Calc Var Partial Differential Equations, 2007, 29: 397- 419
doi: 10.1007/s00526-006-0071-8
|
13 |
Davila J , del Pino M , Wei J . Concentrating standing waves for the fractional nonlinear Schrödinger equation. J Differential Equations, 2014, 256: 858- 892
doi: 10.1016/j.jde.2013.10.006
|
14 |
Frank R , Lenzman E , Silvestre L . Uniqueness of radial solutions for the fractional Laplacian. Commun Pure Appl Anal, 2016, 69: 1671- 1726
doi: 10.1002/cpa.v69.9
|
15 |
Fall M , Mahmoudi F , Valdinoci E . Ground states and concentration phenomena for the fractional Schrödinger equation. Nonlinearity, 2015, 28: 1937- 1961
doi: 10.1088/0951-7715/28/6/1937
|
16 |
Figueiredo G , Sicilinao G . A multiplicity results via Ljusternik-schnirelmann category and Morse theory for a fractional Schrödinger equation in RN. Nonlinear Differ Equ Appl, 2016, 23: 1- 22
doi: 10.1007/s00030-016-0354-5
|
17 |
Guo Q , He X . Semiclassical states for fractional Schrödinger equations with critical growth. Nonlinear Analysis, 2017, 151: 164- 186
doi: 10.1016/j.na.2016.12.004
|
18 |
He X , Zou W . Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc Var Partial Differential Equations, 2016, 55: 1- 39
doi: 10.1007/s00526-015-0942-y
|
19 |
Jiang Y , Zhou H S . Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251: 582- 608
doi: 10.1016/j.jde.2011.05.006
|
20 |
Laskin N . Fractional Schrödinger equations. Phys Rev E, 2002, 66: 056108
doi: 10.1103/PhysRevE.66.056108
|
21 |
Ledesma C T . Existence and concentration of solutions for a nonlinear fractional Schrödinger equations with steep potential well. Commun Pure Appl Anal, 2016, 15: 535- 547
doi: 10.3934/cpaa
|
22 |
陆文端. 微分方程中的的变分法. 北京: 中国科学出版社, 2002
|
|
Lu W . Variational Methods in Partial Differential Equations. Beijing: Scientific Publishing House in China, 2002
|
23 |
Nezza E D , Palatucci G , Valdinoci E . Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136: 521- 573
doi: 10.1016/j.bulsci.2011.12.004
|
24 |
Rudin W . Functional Analysis. Beijin: China Machine Press, 2004
|
25 |
Rabinowitz P H . Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence, RI: Amer Math Soc, 1986
|
26 |
Servadei R . A critical fractional Laplace equation in resonant case. Topol Methods Nonlinear Anal, 2014, 43: 251- 267
|
27 |
Secchi S . Ground state solutions for nonlinear fractional Schrödinger equations in ${{\mathbb{R}}^N}$. J Math Phys, 2013, 54: 031501
doi: 10.1063/1.4793990
|
28 |
Shang X , Zhang J . Ground states for fractional Schrödinger equations with critical growth. Nonlinearity, 2014, 27: 187- 207
doi: 10.1088/0951-7715/27/2/187
|
29 |
Shang X , Zhang J , Yang Y . On fractional Schrödinger equation in ${{\mathbb{R}}^N}$ with critical growth. J Math Phys, 2013, 54: 877- 895
|
30 |
Teng K . Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent. J Differential Equations, 2016, 261: 3061- 3106
doi: 10.1016/j.jde.2016.05.022
|
31 |
Willem M . Minimax Theorems. Boston: Birkhäuser Boston Inc, 1996
|
32 |
Wang Z , Zhou H S . Ground state for nonlinear Schrödinger equation with sign-changing and vanishing potential. J Math Phys, 2011, 52: 113704
doi: 10.1063/1.3663434
|
33 |
Zhao L , Liu H , Zhao F . Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. J Differential Equations, 2013, 255: 1- 23
doi: 10.1016/j.jde.2013.03.005
|
34 |
Zhang J, Jiang W. Existence and concentration of solutions for a fractional Schrödinger equations with sublinear nonlinearity. 2015, arXiv: 1502.02221v1
|