数学物理学报 ›› 2018, Vol. 38 ›› Issue (5): 893-902.

• 论文 • 上一篇    下一篇

变号深阱位势分数阶Schrödinger方程非平凡解的存在性和集中性

王文波1(),李全清2,*()   

  1. 1 云南大学数学与统计学院 昆明 650500
    2 红河学院数学学院 云南蒙自 661100
  • 收稿日期:2017-07-28 出版日期:2018-11-09 发布日期:2018-11-09
  • 通讯作者: 李全清 E-mail:wenbowangmath@163.com;shili06171987@126.com
  • 作者简介:王文波, E-mail: wenbowangmath@163.com
  • 基金资助:
    云南省应用基础研究青年项目和红河学院科研基金博士专项项目(XJ17B11)

Existence and Concentration of Nontrivial Solutions for the Fractional Schrödinger Equations with Sign-Changing Steep Well Potential

Wenbo Wang1(),Quanqing Li2,*()   

  1. 1 School of Mathematics and Statistics, Yunnan University, Kunming 650500
    2 Department of Mathematics, Honghe University, Yunnan Mengzi 661100
  • Received:2017-07-28 Online:2018-11-09 Published:2018-11-09
  • Contact: Quanqing Li E-mail:wenbowangmath@163.com;shili06171987@126.com
  • Supported by:
    the Yunnan Province Applied Basic Research for Youths and Honghe University Doctoral Research Program(XJ17B11)

摘要:

考虑分数阶Schrödinger方程

非平凡解的存在性和集中性,其中$\lambda>0$, $s\in(0, 1)$, $N>2s$, $2<q<p<2_{s}^{\ast}$ ($2_{s}^{\ast}=\frac{2N}{N-2s}$), $P\in L^{\infty}$有正的下界, $Q\in L^{\infty}$可正可负或变号, $V$是深势阱位势, $V_{0}\in L^{\infty}$.当$\lambda$充分大时,此方程存在非平凡解.进一步,如果$V(x)\geq0$,其解序列拥有某种集中现象.特别地,对于解的存在性, $V$允许变号.

关键词: 分数阶Schrödinger方程, 势阱位势, 变号位势, 集中性

Abstract:

Consider the following fractional Schrödinger equation

where $\lambda>0$, $s\in(0, 1)$, $N>2s$, $2<q<p<2_{s}^{\ast}$ ($2_{s}^{\ast}=\frac{2N}{N-2s}$), $P\in L^{\infty}$ is positive, $Q\in L^{\infty}$ may be positive, sign-changing or negative, $V$ is steep well potential, and $V_{0}\in L^{\infty}$. When $\lambda$ is large, the existence of nontrivial solutions is obtained via variational methods. Furthermore, if $V(x)\geq0$, concentration results are also obtained. In particular, the potential $V$ is allowed to be sign-changing for the existence.

Key words: Fractional Schrödinger equations, Steep well potential, Sign-changing potential, Concentration

中图分类号: 

  • O175.29