|
A remark on the Folland-Stein theorem for the Heisenberg group
Ouyang Caiheng, Liang Youming
Acta mathematica scientia,Series A. 1998, 18 (3):
342-347.
In this note, based on the operator#br#La=-1/2∑j=1n(ZjZj+ZjZj)+iaT,a∈C,#br#the authors extend consideration to the operator#br#Lλ、μ、α=λ∑j=1nZjZj+μ∑j=1nZjZj+iaT,λ,μ,α∈C,#br#whereλ+μ≠0且λ≠α/2n,μ≠-α/2n).It is proved that if φa,b(z,t)=(|z|2-it)a(|z|2+it)b,a=(a-2nλ)/(2(λ+μ)),b=-(a+2nμ)/(2(λ+μ)) such that Ca,b=∫Hnψa,b,1(z,t)dV(z,t)is finite, here ψa,b,1(z,t)=-4(λ+μ)ab(|z|2+1-it)a-1(|z|2+1+it)b-1,then have#br#Lλ、μ、α φa,b=Ca,bδ#br#in the sense of distributions. Especially,as λ=μ=-1/2, the above result is just the Folland Stein theorem.
Related Articles |
Metrics
|