Acta mathematica scientia,Series A ›› 1998, Vol. 18 ›› Issue (3): 342-347.

Previous Articles     Next Articles

A remark on the Folland-Stein theorem for the Heisenberg group

Ouyang Caiheng1, Liang Youming2   

  1. 1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071;
    2. Airforce Radar Academy, Wuhan 430010
  • Received:1997-12-01 Online:1998-09-26 Published:1998-09-26

Abstract: In this note, based on the operator#br#La=-1/2∑j=1n(ZjZj+ZjZj)+iaT,aC,#br#the authors extend consideration to the operator#br#Lλ、μ、α=λj=1nZjZj+μj=1nZjZj+iaT,λ,μ,αC,#br#whereλ+μ≠0且λα/2n,μ≠-α/2n).It is proved that if φa,b(z,t)=(|z|2-it)a(|z|2+it)b,a=(a-2)/(2(λ+μ)),b=-(a+2)/(2(λ+μ)) such that Ca,b=∫Hnψa,b,1(z,t)dV(z,t)is finite, here ψa,b,1(z,t)=-4(λ+μ)ab(|z|2+1-it)a-1(|z|2+1+it)b-1,then have#br#Lλ、μ、α φa,b=Ca,bδ#br#in the sense of distributions. Especially,as λ=μ=-1/2, the above result is just the Folland Stein theorem.

Key words: Heisenberg group, Folland-Stein theorem, fundamental solution

Trendmd