Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 26-36.
Previous Articles Next Articles
Received:
2022-10-08
Revised:
2023-09-28
Online:
2024-02-26
Published:
2024-01-10
Supported by:
CLC Number:
Zhang Youhua. A Vanishing Theorem for
[1] |
Li P. On the Sobolev constant and the![]() doi: 10.24033/asens.1392 |
[2] |
Tanno S. ![]() ![]() |
[3] |
Lin H Z. On the structure of submanifolds in Euclidean space with flat normal bundle. Results in Mathematics, 2015, 68(3): 313-329
doi: 10.1007/s00025-015-0435-5 |
[4] |
Zhang X. A note on![]() doi: 10.4153/CMB-2001-038-2 |
[5] |
Lin H Z. Vanishing theorems for hypersurfaces in the unit sphere. Glasgow Mathematical Journal, 2018, 60(3): 661-671
doi: 10.1017/S0017089517000350 |
[6] |
Han Y B. ![]() ![]() doi: 10.1007/s00574-017-0051-y |
[7] |
Lin H Z, Yang B G. The![]() ![]() ![]() ![]() doi: 10.1016/j.jmaa.2020.124018 |
[8] | Li P. Lecture Notes on Geometric Analysis. Seoul: Global Analysis Research Cewter, 1993 |
[9] |
Calderbank D M J, Gauduchon P, Herzlich M. Refined Kato inequalities and conformal weights in Riemannian geometry. Journal of Functional Analysis, 2000, 173(1): 214-255
doi: 10.1006/jfan.2000.3563 |
[10] |
Dung N T, Tien P T. Vanishing properties of![]() ![]() |
[11] |
Dung N T, Seo K. ![]() doi: 10.1007/s10231-016-0625-0 |
[12] |
Hoffman D, Spruck J. Sobolev and isoperimetric inequalities for Riemannian submanifolds. Communications on Pure and Applied Mathematics, 1974, 27(6): 715-727
doi: 10.1002/cpa.v27:6 |
[13] |
Fu H P, Xu H W. Total curvature and![]() ![]() doi: 10.1007/s10711-009-9392-z |
[14] |
Duzaar F, Fuchs M. On removable singularities of![]() |
[15] | Lin H Z. On the srtucture of conformally flat Riemannian manifolds. Nonlinear Analysis, 2015, (123/124): 115-125 |
[1] |
Biaogui Yang,Jing Chen.
Almost Contact Lagrangian Submanifolds of Nearly Kaehler ![]() ![]() |
[2] | YIN Song-Ting, SONG Wei-Dong. Generic Submanifolds with Flat Normal Bundle in a Complex Projective Space [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1626-1632. |
[3] | SONG Wei-Dong, LIU Min. On Submanifolds with Constant Scalar Curvature in a Locally Symmetric and Conformally Flat Space [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1102-1110. |
[4] | HAN Ying-Bo. Some Explicit Examples of Lagrangian Submanifolds with Conformal Maslov Form in Complex Space Forms [J]. Acta mathematica scientia,Series A, 2009, 29(4): 912-917. |
[5] | JI Yong-Jiang, LI Hai-Feng. The Compact Minimal Submanifolds in Locally Symmetric Space [J]. Acta mathematica scientia,Series A, 2009, 29(3): 751-756. |
[6] |
Zhang Liang; Song Weidong.
Totally Real Pseudo-umbilical Submanifolds with Flat Normal Bundle of Complex Projective Space [J]. Acta mathematica scientia,Series A, 2007, 27(4): 688-695. |
[7] | SHU Shi-Chang, LIU San-Yang. Complete Space like Submanifolds with Flat Connection of Normal Bundle in the de Sitter Space [J]. Acta mathematica scientia,Series A, 2004, 24(4): 464-468. |
[8] | LI Jin-Tang. F harmonic Maps for Minimal Submanifoldswith Positive Ricci Curvature [J]. Acta mathematica scientia,Series A, 2004, 24(2): 152-156. |
[9] | Song Weidong. On the Pseudo-umbilical Submanifolds with Parallel Second Fundamental Form [J]. Acta mathematica scientia,Series A, 2000, 20(2): 158-162. |
[10] | LiGuanghan Wu Chuanxi. Relations between focal points and shape operators of submanifolds in noncompact symmetic spaces [J]. Acta mathematica scientia,Series A, 1999, 19(4): 387-396. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 185
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|