Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 37-49.
Previous Articles Next Articles
Received:
2022-09-06
Revised:
2023-08-25
Online:
2024-02-26
Published:
2024-01-10
Supported by:
CLC Number:
He Ya, An Jing. An Effective Fourier Spectral Approximation for Fourth-Order Eigenvalue Problems with Periodic Boundary Conditions[J].Acta mathematica scientia,Series A, 2024, 44(1): 37-49.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
An J, Li H Y, Zhang Z M. Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains. Numerical Algorithms, 2020, 84(2): 427-455
doi: 10.1007/s11075-019-00760-4 |
[2] |
An J, Luo Z D. A high accuracy spectral method based on min/max principle for biharmonic eigenvalue problems on a spherical domain. Journal of Mathematical Analysis and Applications, 2016, 439(1): 385-395
doi: 10.1016/j.jmaa.2016.02.048 |
[3] |
An J, Shen J. A Spectral-Element method for transmission eigenvalue problems. Journal of Scientific Computing, 2013, 57(3): 670-688
doi: 10.1007/s10915-013-9720-1 |
[4] | An J. A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues. Applied Numerical Mathematics, 2016, 108: 171-184 |
[5] | BABU Š KA I, Osborn J. Eigenvalue problems. Handbook of Numerical Analysis, 1991, 2: 641-787 |
[6] |
Banerjee U, Osborn J E. Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numerische Mathematik, 1989, 56(8): 735-762
doi: 10.1007/BF01405286 |
[7] |
Boffi D. Finite element approximation of eigenvalue problems. Acta Numerica, 2010, 19: 1-120
doi: 10.1017/S0962492910000012 |
[8] |
Chen L Z, An J, Zhuang Q Q. Direct solvers for the biharmonic eigenvalue problems using Legendre polynomials. Journal of Scientific Computing, 2017, 70(3): 1030-1041
doi: 10.1007/s10915-016-0277-7 |
[9] | Chen L Z, Shen J, Xu C J. A triangular spectral method for the Stokes equations. Numerical Mathematics: Theory, Methods and Applications, 2011, 4(2): 158-179 |
[10] |
Dubiner M. Spectral methods on triangles and other domains. Journal of Scientific Computing, 1991, 6(4): 345-390
doi: 10.1007/BF01060030 |
[11] |
Fu H F, Rui H X, Hou J, et al. A stabilized mixed finite element method for elliptic optimal control problems. Journal of Scientific Computing, 2016, 66(3): 968-986
doi: 10.1007/s10915-015-0050-3 |
[12] |
Ge Y X, Tan T, An J. A high accuracy numerical method and error analysis for fourth order elliptic eigenvalue problems in circular domain. Advances in Applied Mathematics and Mechanics, 2020, 12(3): 815-834
doi: 10.4208/aamm |
[13] |
Grebenkov D S, Nguyen B T. Geometrical structure of Laplacian eigenfunctions. SIAM Review, 2013, 55(4): 601-667
doi: 10.1137/120880173 |
[14] | Griffin A, Snoke D W, Stringari S. Bose-Einstein Condensation. Cambridge University Press, 1996 |
[15] |
Kuttler J R. A finite-difference approximation for the eigenvalues of the clamped plate. Numerische Mathematik, 1971, 17(3): 230-238
doi: 10.1007/BF01436379 |
[16] |
Lamichhane B P. A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems. Journal of Computational and Applied Mathematics, 2011, 235(17): 5188-5197
doi: 10.1016/j.cam.2011.05.005 |
[17] |
Mercier B, Osborn J, Rappaz J, et al. Eigenvalue approximation by mixed and hybrid methods. Mathematics of Computation, 1981, 36(154): 427-453
doi: 10.1090/mcom/1981-36-154 |
[18] | Neese F. Prediction of electron paramagnetic resonance$g$values using coupled perturbed Hartree-Fock and Kohn-Sham theory. Chem Phys, 2001, 115(24): 11080-11096 |
[19] |
Pasquetti R, Rapetti F. Spectral element methods on unstructured meshes: Comparisons and recent advances. Journal of Scientific Computing, 2006, 27(1): 377-387
doi: 10.1007/s10915-005-9048-6 |
[20] |
Rannacher R. Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numerische Mathematik, 1979, 33(1): 23-42
doi: 10.1007/BF01396493 |
[21] |
Shen J, Wang L L, Li H Y. A triangular spectral element method using fully tensorial rational basis functions. SIAM Journal on Numerical Analysis, 2009, 47(3): 1619-1650
doi: 10.1137/070702023 |
[22] |
Sherwin S J, Karniadakis G E. A triangular spectral element method: Applications to the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 1995, 123(1-4): 189-229
doi: 10.1016/0045-7825(94)00745-9 |
[23] |
Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 2009, 102(7): 073005
doi: 10.1103/PhysRevLett.102.073005 |
|