Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 26-36.
Previous Articles Next Articles
Received:
2022-10-08
Revised:
2023-09-28
Online:
2024-02-26
Published:
2024-01-10
Supported by:
CLC Number:
Zhang Youhua. A Vanishing Theorem forp-harmonicℓ-forms in Space with Constant Curvature[J].Acta mathematica scientia,Series A, 2024, 44(1): 26-36.
[1] |
Li P. On the Sobolev constant and thep-spectrum of a compact riemannian manifold. Annales scientifiques de l'école Normale Supérieure, 1980, 13(4): 451-468
doi: 10.24033/asens.1392 |
[2] | Tanno S. L2harmonic forms and stability of minimal hypersurfaces. Tokyo Sugaku Kaisya Zasshi, 1996, 48(4): 761-768 |
[3] |
Lin H Z. On the structure of submanifolds in Euclidean space with flat normal bundle. Results in Mathematics, 2015, 68(3): 313-329
doi: 10.1007/s00025-015-0435-5 |
[4] |
Zhang X. A note onp-harmonic l-forms on complete manifolds. Canadian Mathematical Bulletin, 2001, 44: 376-384
doi: 10.4153/CMB-2001-038-2 |
[5] |
Lin H Z. Vanishing theorems for hypersurfaces in the unit sphere. Glasgow Mathematical Journal, 2018, 60(3): 661-671
doi: 10.1017/S0017089517000350 |
[6] |
Han Y B. p-Harmonicℓ-forms on complete noncompact submanifolds in sphere with flat normal bundle. Bulletin of the Brazilian Mathematical Society, New Series, 2018, 49(1): 107-122
doi: 10.1007/s00574-017-0051-y |
[7] |
Lin H Z, Yang B G. Thep-eigenvalue estimates andLqp-harmonic forms on submanifolds of Hadamard manifolds. Journal of Mathematical Analysis and Applications, 2020, 488(1): 124018
doi: 10.1016/j.jmaa.2020.124018 |
[8] | Li P. Lecture Notes on Geometric Analysis. Seoul: Global Analysis Research Cewter, 1993 |
[9] |
Calderbank D M J, Gauduchon P, Herzlich M. Refined Kato inequalities and conformal weights in Riemannian geometry. Journal of Functional Analysis, 2000, 173(1): 214-255
doi: 10.1006/jfan.2000.3563 |
[10] | Dung N T, Tien P T. Vanishing properties ofp-harmonicℓ-forms on Riemannian manifolds. Journal of the Korean Mathematical Society, 2018, 55(5): 1103-1129 |
[11] |
Dung N T, Seo K. p-harmonic functions and connectedness at infinity of complete Riemannian manifolds. Annali Di Matematica Pura Ed Applicata, 2017, 196(4): 1489-1511
doi: 10.1007/s10231-016-0625-0 |
[12] |
Hoffman D, Spruck J. Sobolev and isoperimetric inequalities for Riemannian submanifolds. Communications on Pure and Applied Mathematics, 1974, 27(6): 715-727
doi: 10.1002/cpa.v27:6 |
[13] |
Fu H P, Xu H W. Total curvature andL2harmonic 1-forms on complete submanifolds in space forms. Geometriae Dedicata, 2010, 144(1): 129-140
doi: 10.1007/s10711-009-9392-z |
[14] | Duzaar F, Fuchs M. On removable singularities ofp-harmonic maps. Ann Inst H Poincar'e Anal Non Lin'eaire, 1990, 7: 385-405 |
[15] | Lin H Z. On the srtucture of conformally flat Riemannian manifolds. Nonlinear Analysis, 2015, (123/124): 115-125 |
[1] |
Biaogui Yang,Jing Chen.
Almost Contact Lagrangian Submanifolds of Nearly Kaehler |
[2] | YIN Song-Ting, SONG Wei-Dong. Generic Submanifolds with Flat Normal Bundle in a Complex Projective Space [J]. Acta mathematica scientia,Series A, 2011, 31(6): 1626-1632. |
[3] | SONG Wei-Dong, LIU Min. On Submanifolds with Constant Scalar Curvature in a Locally Symmetric and Conformally Flat Space [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1102-1110. |
[4] | HAN Ying-Bo. Some Explicit Examples of Lagrangian Submanifolds with Conformal Maslov Form in Complex Space Forms [J]. Acta mathematica scientia,Series A, 2009, 29(4): 912-917. |
[5] | JI Yong-Jiang, LI Hai-Feng. The Compact Minimal Submanifolds in Locally Symmetric Space [J]. Acta mathematica scientia,Series A, 2009, 29(3): 751-756. |
[6] |
Zhang Liang; Song Weidong.
Totally Real Pseudo-umbilical Submanifolds with Flat Normal Bundle of Complex Projective Space [J]. Acta mathematica scientia,Series A, 2007, 27(4): 688-695. |
[7] | SHU Shi-Chang, LIU San-Yang. Complete Space like Submanifolds with Flat Connection of Normal Bundle in the de Sitter Space [J]. Acta mathematica scientia,Series A, 2004, 24(4): 464-468. |
[8] | LI Jin-Tang. F harmonic Maps for Minimal Submanifoldswith Positive Ricci Curvature [J]. Acta mathematica scientia,Series A, 2004, 24(2): 152-156. |
[9] | Song Weidong. On the Pseudo-umbilical Submanifolds with Parallel Second Fundamental Form [J]. Acta mathematica scientia,Series A, 2000, 20(2): 158-162. |
[10] | LiGuanghan Wu Chuanxi. Relations between focal points and shape operators of submanifolds in noncompact symmetic spaces [J]. Acta mathematica scientia,Series A, 1999, 19(4): 387-396. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 185
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|