Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 26-36.

Previous Articles     Next Articles

A Vanishing Theorem for$p$-harmonic$\ell$-forms in Space with Constant Curvature

Zhang Youhua()   

  1. Fujian Normal University, Fuzhou 350000
  • Received:2022-10-08 Revised:2023-09-28 Online:2024-02-26 Published:2024-01-10
  • Supported by:
    NSFC(2021J01165)

Abstract:

Let$M^{n}(n \geq 3)$be a complete non-compact submanifold immersed in a space with constant curvature$N^{n+m}(c)$with flat normal bundle. By using Bochner-Weitzenböck formula, Sobolev inequality, Moser iteration and Fatou lemma, we prove that every$L^{\beta}~p$-harmonic forms on$M$is trivial if$M^{n}$satisfies some geometic conditions, where$\beta\geq p\geq 2$.

Key words: Submanifold, $p$-harmonic form, Vanishing theorem

CLC Number: 

  • O186.12
Trendmd