Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (1): 12-25.
Previous Articles Next Articles
Received:
2022-11-30
Revised:
2023-05-15
Online:
2024-02-26
Published:
2024-01-10
Supported by:
CLC Number:
Shen Runshuan, Hou Guolin. The Fine Pseudo-spectra of2×2Diagonal Block Operator Matrices[J].Acta mathematica scientia,Series A, 2024, 44(1): 12-25.
[1] | Trefethen L N, Embree M. Spectra and Pseudospectra:The Behavior of Nonnormal Matrices and Operators. Princeton: Princeton University Press, 2005 |
[2] | Davies E B. Linear Operators and Their Spectra. Cambridge: Cambridge University Press, 2007 |
[3] | Lui S H. A pseudospectral mapping theorem. Math Comp, 2003, 244(72): 1841-1854 |
[4] |
Lancaster P, Psarrakos P. On the pseudospectra of matrix polynomials. SIAM J Matrix Anal Appl, 2005, 27(1): 115-129
doi: 10.1137/S0895479804441420 |
[5] |
Shargorodsky E. Pseudospectra of semigroup generators. Bull Lond Math Soc, 2010, 42(6): 1031-1034
doi: 10.1112/blms/bdq062 |
[6] |
Cui J L, Forstall V, Li C K, et al. Properties and preservers of the pseudospectrum. Linear Algebra Appl, 2012, 436(2): 316-325
doi: 10.1016/j.laa.2011.03.044 |
[7] |
Bögli S. Local convergence of spectra and pseudospectra. J Spectr Theor, 2018, 8(3): 1051-1098
doi: 10.4171/jst |
[8] |
Ammar A, Jeribi A. The essential pseudo-spectra of a sequence of linear operators. Complex Anal Oper Theory, 2018, 12(3): 835-848
doi: 10.1007/s11785-018-0776-7 |
[9] |
Ammar A, Jeribi A, Mahfoudhi K. A characterization of the essential approximation pseudospectrum on a Banach space. Filomat, 2017, 31(11): 3599-3610
doi: 10.2298/FIL1711599A |
[10] | Ammar A, Jeribi A, Mahfoudhi K. Some description of essential structured approximate and defect pseudospectrum. Korean J Math, 2020, 28(4): 673-697 |
[11] |
Hagger R, Lindner M, Seidel M. Essential pseudospectra and essential norms of band-dominated operators. J Math Anal Appl, 2016, 437(1): 255-291
doi: 10.1016/j.jmaa.2015.11.060 |
[12] | Raouafi S. Operators with minimal pseudospectra and connections to normality. Oper Matrices, 2020, 14(1): 91-103 |
[13] |
Ferro R, Virtanen J A. A note on structured pseudospectra of block matrices. J Comput Appl Math, 2017, 322: 18-24
doi: 10.1016/j.cam.2017.03.020 |
[14] |
Rump S M. Eigenvalues, pseudospectrum and structured perturbations. Linear Algebra Appl, 2006, 413 (2-3): 567-593
doi: 10.1016/j.laa.2005.06.009 |
[15] |
Ammar A, Boukettaya B, Jeribi A. A note on the essential pseudospectra and application. Linear Multilinear Algebra, 2016, 64(8): 1474-1483
doi: 10.1080/03081087.2015.1091436 |
[16] |
Roy N, Karow M, Bora S, et al. Approximation of pseudospectra of block triangular matrices. Linear Algebra Appl, 2021, 623: 398-419
doi: 10.1016/j.laa.2020.08.008 |
[17] | Kostić V R, Cvetković L, Šanca E. From pseudospectra of diagonal blocks to pseudospectrum of a full matrix. J Comput Appl Math, 2021, 386: 113265 |
[18] |
Pal A, Yakubovich D V. Infinite-Dimentional features of matrices and pseudospectra. J Math Anal Appl, 2017, 447: 109-127
doi: 10.1016/j.jmaa.2016.09.064 |
[19] |
Frommer A, Jacob B, Vorberg L, et al. Pseudospectrum enclosures by discretization. Integr Equ Oper Theory, 2021, 93(1): 1-31
doi: 10.1007/s00020-020-02616-2 |
[20] | 吴德玉, 阿拉坦仓. 分块算子矩阵谱理论及其应用. 北京: 科学出版社, 2013 |
Wu D Y, Alatancang. Spectral Theory of the Block Operator Matrix and Application. Beijing: Science Press, 2013 | |
[21] |
Zhang S F, Wu Z Y, Zhong H J. Continuous spectrum, point spectrum and residual spectrum of operator matrices. Linear Algebra Appl, 2010, 433(3): 653-661
doi: 10.1016/j.laa.2010.03.036 |
[22] |
Zhang H Y, Du H K. Browder spectra of upper-triangular operator matrices. J Math Anal Appl, 2006, 323: 700-707
doi: 10.1016/j.jmaa.2005.10.073 |
[23] |
Li Y, Du H K. The intersection of essential approximate point spectra of operator matrices. J Math Anal Appl, 2007, 323: 1171-1183
doi: 10.1016/j.jmaa.2005.11.032 |
[24] |
Yang L L, Cao X H. Perturbations of spectra and property (R) for upper triangular operator matrices. J Math Anal Appl, 2023, 519(1): 126797
doi: 10.1016/j.jmaa.2022.126797 |
[25] | Cvetković-Ilić Dragana S. Completion Problems on Operator Matrices. Rhode Island: American Mathematical Society, 2022 |
[26] | Shen R S, Hou G L, and Chen A. On the pseudo-spectra and the related properties of infinite-dimensional Hamiltonian operators. Linear Multilinear Algebra, DOI:10.1080/03081087.2021.2006127 |
[1] | Rui Hua,Yaru Qi. The Essential Spectrum of a Class of Anti-Triangular Operator Matrices [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1611-1618. |
[2] | Liqiong Lin,Jiahua Que,Yunnan Zhang. Similarity and Unitary Similarity of a Class of Upper Triangular Operator Matrices [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1281-1293. |
[3] | Wenwen Qiu,Yaru Qi. The Quadratic Numerical Range and the Spectrum of Some Unbounded Block Operator Matrices [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1420-1430. |
[4] | Lin Li, Alatancang. Essential and Weyl Spectra of 2×2 Bounded Block Operator Matrices [J]. Acta mathematica scientia,Series A, 2019, 39(3): 431-440. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 212
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 133
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|