Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (3): 941-956.doi: 10.1007/s10473-022-0308-4
• Articles • Previous Articles Next Articles
Haifeng LI, Jing ZHANG
Received:
2020-09-02
Revised:
2021-05-28
Online:
2022-06-26
Published:
2022-06-24
Contact:
Haifeng Li,E-mail:lihaifengxx@126.com
E-mail:lihaifengxx@126.com
Supported by:
CLC Number:
Haifeng LI, Jing ZHANG. A NEW SUFFICIENT CONDITION FOR SPARSE RECOVERY WITH MULTIPLE ORTHOGONAL LEAST SQUARES[J].Acta mathematica scientia,Series A, 2022, 42(3): 941-956.
[1] | Chen S, Billings S, Luo W. Orthogonal least squares methods and their application to non-linear system identification. Int J Control, 1989, 50(5):1873-1896 |
[2] | Foucart S. Stability and robustness of weak orthogonal matching pursuits//Recent Adv Harmonic Anal and App. Springer, 2013:395-405 |
[3] | Geng P, Chen W, Ge H. Perturbation analysis of orthogonal least squares. Canadian Mathematical Bulletin, 2019, 62(4):780-797 |
[4] | Herzet C, Soussen C, Idier J, Gribonval R. Exact recovery conditions for sparse representations with partial support information. IEEE Trans Inform Theory, 2013, 59(11):7509-7524 |
[5] | Herzet C, Drémeau A, Soussen C. Relaxed recovery conditions for OMP/OLS by exploiting both coherence and decay. IEEE Transactions on Information Theory, 2015, 62(1):459-470 |
[6] | Wang J, Li P. Recovery of sparse signals using multiple orthogonal least squares. IEEE Trans. Signal Process, 2017, 65(8):2049-2062 |
[7] | Li H, Zhang J, Zou J. Improving the bound on the restricted isometry property constant in multiple orthogonal least squares. IET Signal Processing, 2018, 12(5):666-671 |
[8] | Kim J, Shim B. A Near-Optimal Restricted Isometry Condition of Multiple Orthogonal Least Squares. IEEE Access, 2019, 7:46822-46830 |
[9] | Wen J, Wang J, Zhang Q. Nearly optimal bounds for orthogonal least squares. IEEE Trans Signal Process, 2017, 65(20):5347-5356 |
[10] | Chen W, Li Y. Stable recovery of signals with the high order D-RIP condition. Acta Matematica Scientia, 2016, 36(6):1721-1730 |
[11] | Abdillahi-Ali D, Azzaout N, Guillin A, Le Mailloux G, Matsui T. Penalized least square in sparse setting with convex penalty and non Gaussian errors. Acta Matematica Scientia, 2021, 41(6):2198-2216 |
[12] | Li H, Liu G. An improved analysis for support recovery with orthogonal matching pursuit under general perturbations. IEEE Access, 2018, 6:18856-18867 |
[13] | Pati Y, Rezaiifar R, Krishnaprasad P. Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition//Proc 27th Annu. Asilomar Conf Signals, Systems, and Computers. IEEE, Pacific Grove, CA, 1993, 1:40-44 |
[14] | Chen W, Ge H. A sharp recovery condition for block sparse signals by block orthogonal multi-matching pursuit. Science China Mathematics, 2017, 60(7):1325-1340 |
[15] | Dan W, Wang R. Robustness of orthogonal matching pursuit under restricted isometry property. Science China Mathematics, 2014, 57(3):627-634 |
[16] | Zhang T. Sparse recovery with orthogonal matching pursuit under RIP. IEEE Transactions on Information Theory, 2011, 57(9):6215-6221 |
[17] | Wang J, Li P, Shim B. Exact recovery of sparse signals using orthogonal matching pursuit:How many iterations do we need?. IEEE Transactions on Signal Processing, 2016, 64(16):4194-4202 |
[18] | Candes E, Tao T. Decoding by linear programming. IEEE Trans Inf Theory, 2005, 51(12):4203-4215 |
[19] | Baraniuk R, Davenport M, DeVore R, Wakin M. A simple proof of the restricted isometry property for random matrices. Construct Approx, 2008, 28(3):253-263 |
[20] | Blumensath T, Davies M. On the difference between orthogonal matching pursuit and orthogonal least squares//Technical Report. Southampton:University of Southampton, 2007. https://eprints.soton.ac.uk/142469/1/BDOMPvsOLS07.pdf. |
[21] | Soussen C, Gribonval R, Idier J, Herzet C. Joint k-step analysis of orthogonal matching pursuit and orthogonal least squares. IEEE Trans Inf Theory, 2013, 59(5):3158-3174 |
[22] | Wang J, Kwon S, Li P, Shim B. Recovery of sparse signals via generalized orthogonal matching pursuit:A new analysis. IEEE Transactions on Signal Process, 2016, 64(4):1076-1089 |
[23] | Kim J, Wang J, Nguyen L, Shim B. Joint sparse recovery using signal space matching pursuit. IEEE Transactions on Information Theory, 2020, 66(8):5072-5096 |
[24] | Kim J, Wang J, Shim B. Optimal restricted isometry condition of normalized sampling matrices for exact sparse recovery with orthogonal least squares. IEEE Transaction on Signal Processing, 2021, 69(1):1521-1536 |
[1] | Li Bang, Yu Jinghu. Comparison of Inequality Under Incomplete Information and Based on Schur-Convex Function [J]. Acta mathematica scientia,Series A, 2018, 38(2): 334-349. |
[2] | Luo Ricai, Xu Honglei, Wang Wusheng. Globally Asymptotic Stability of A New Class of Neutral Neural Networks with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2015, 35(3): 634-640. |
[3] | XIONG Liang-Peng, LIU Xiao-Li. Hadamard Product of Finitely Order of Certain Class of Analytic Functions Defined by Subordination [J]. Acta mathematica scientia,Series A, 2014, 34(1): 150-156. |
[4] | WANG Yan-Ling, SHI Guo-Liang. Positve Solutions of Fourth Order Singular Superlinear p-Laplacian BVPs [J]. Acta mathematica scientia,Series A, 2009, 29(2): 344-352. |
[5] |
Zhang Shangli;Qin Hong.
Universal Admissibility of Linear Estimators in Growth Curve Model with Respect to Restricted Parameter Sets [J]. Acta mathematica scientia,Series A, 2008, 28(3): 523-529. |
[6] | Peng Jianwen;Zhu Daoli. Strictly B -Preinvex Functions [J]. Acta mathematica scientia,Series A, 2006, 26(2): 200-206. |
[7] | DI Shen-Jia-Bo, FAN Meng, WANG Ke. Stability and Boundedness of Neutral Functional Differential Equations with Infinite Delay [J]. Acta mathematica scientia,Series A, 2005, 25(5): 593-603. |
[8] | DIAO Ceng-Qi. On Existence Theorems of Positive Solutions for Nonlinear Singular Differential Equations [J]. Acta mathematica scientia,Series A, 2005, 25(3): 393-403. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|