Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (5): 1230-1241.
Previous Articles Next Articles
Gao Xiaoru*(),Li Jianjun,Tu Jun
Received:
2023-09-18
Revised:
2024-04-28
Online:
2024-10-26
Published:
2024-10-16
Supported by:
CLC Number:
Gao Xiaoru, Li Jianjun, Tu Jun. Blow-Up of Solutions for a Class of Fractional Diffusion Equations with Time Dependent Coefficients[J].Acta mathematica scientia,Series A, 2024, 44(5): 1230-1241.
[1] |
Caffarelli L, Silvestre L. An extension problem related to the fractional laplacian. Commun Part Diff Eq, 2007, 32(8): 1245-1260
doi: 10.1080/03605300600987306 |
[2] | Applebaum D. Levy processes-from probability to finance and quantum groups. Notices of the American Mathematical Society, 2004, 51(11): 1336-1347 |
[3] | Cabre X, Sire Y. Nonlinear equations for fractional laplacians II: Existence, uniqueness, and qualitative properties of solutions. T Am Math Soc, 2015, 367(2): 911-941 |
[4] |
Lopez-Soriano R, Ortega A. A strong maximum principle for the fractional Laplace equation with mixed boundary condition. Fract Calc Appl Anal, 2021, 24(6): 1699-1715
doi: 10.1515/fca-2021-0073 |
[5] | Fu Y Q, Pucci P. On solutions of space-fractional diffusion equations by means of potential wells. Electron J Qual Theo, 2016, 2016(70): 1-17 |
[6] | De Pablo A, Quirós F, Rodríguez A, et al. A general fractional porous medium equation. Commun Pur Appl Math, 2012, 65(9): 1242-1284 |
[7] | Tan Z, Xie M H. Global existence and blow up of solutions to semilinear fractional reaction-diffusion equation with singular potential. J Math Anal Appl, 2021, 493(2): 124548 |
[8] | 彭红玲, 樊明书. 一类半线性分数阶反应扩散方程解的整体存在性. 西南师范大学学报 (自然科学版), 2022, 47(4): 45-51 |
Peng H L, Fan M S. Global existence of solutions for a semilinear fractional reaction diffusion equation. Journal of Southwest China Normal University (Natural Science Edition), 2022, 47(4): 45-51 | |
[9] | Liao M L, Liu Q, Ye H L. Global existence and blow-up of weak solutions for a class of fractional p-Laplacian evolution equations. Adv Nonlinear Anal, 2020, 9(1): 1569-1591 |
[10] | Ding H, Zhou J. Global existence and blow-up for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity-II. Appl Anal, 2019, 100(12): 2641-2658 |
[11] | 李建军, 王看看, 徒君. 具有奇异势的拟线性分数阶扩散方程解的爆破性. 应用数学, 2022, 35(4): 819-826 |
Li J J, Wang K K, Tu J. Blow up of solutions to quasilinear fractional diffusion equation with singular potential. Math Appl, 2022, 35(4): 819-826 | |
[12] | 时蒙蒙, 王建. 具有对数非线性项和分数阶 p 拉普拉斯算子的抛物方程解的爆破性质. 中国海洋大学学报 (自然科学版), 2022, 52(4): 138-146 |
Shi M M, Wang J. Blow up of solutions for a parabolic equation with logarithmic nonlinear terms and fractional p-laplacian. Periodical of Ocean University of China (Natural Science Edition), 2022, 52(4): 138-146 | |
[13] | Han Y Z. Blow-up phenomena for a reaction diffusion equation with special diffusion process. Appl Anal, 2022, 101(6): 1971-1983 |
[14] | Yang H, Ma F T, Gao W J, et al. Blow-up properties of solutions to a class of p-Kirchhoff evolution equations. Electron Res Arch, 2022, 30(7): 2663-2680 |
[15] | Shen X H, Ding J T. Blow-up phenomena in porous medium equation systems with nonlinear boundary conditions. Comput Math Appl, 2019, 77(12): 3250-3263 |
[16] | Ahmed I, Mu C, Zheng P, et al. Blow-up and global existence for the non-local reaction diffusion problem with time dependent coefficient. Bound Value Probl, 2013, 2013(1): 1-6 |
[17] | Philippin G A. Blow-up phenomena for a class of fourth-order parabolic problems. P Am Math Soc, 2015, 143(6): 2507-2513 |
[18] | Levine H A. Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put =−Au+F(u). Arch Ration Mech Anal, 1973, 51: 371-386 |
[1] | Wang Junjie. Symplectic Difference Scheme for the Space Fractional KGS Equations [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1319-1334. |
[2] | Zhang Xiao, Zhang Hongwu. Fractional Tikhonov Regularization Method for an Inverse Boundary Value Problem of the Fractional Elliptic Equation [J]. Acta mathematica scientia,Series A, 2024, 44(4): 978-993. |
[3] | Wang Weimin, Yan Wei. Convergence Problem and Dispersive Blow-up for the Modified Kawahara Equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 595-608. |
[4] | Bin Maojun, Shi Cuiyun. Time Optimal Control for Semilinear Riemann-Liouville Fractional Evolution Feedback Control Systems [J]. Acta mathematica scientia,Series A, 2024, 44(3): 687-698. |
[5] | Li Fengjie, Li Ping. Blow-up Solutions in a p-Kirchhoff Equation of Pseudo-Parabolic Type [J]. Acta mathematica scientia,Series A, 2024, 44(3): 717-736. |
[6] | Sun Xiaochun, Wu Yulian, Xu Gaoting. Global Well-Posedness for the Fractional Navier-Stokes Equations with the Coriolis Force [J]. Acta mathematica scientia,Series A, 2024, 44(3): 737-745. |
[7] | Zhou Yue, Yang Yan. Uncertainty Principles of Fractional Fourier Transform [J]. Acta mathematica scientia,Series A, 2024, 44(2): 257-264. |
[8] | Wang Wenxia. The Method of Sum Operator and Unique Positive Solution for Fractional Nonlinear Integral Boundary Value Problems with p-Laplacian Operator [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1731-1743. |
[9] | Xu Fei, Zhang Yong. Uniqueness and Asymptotic Stability of Time-Periodic Solutions for the Fractional Burgers Equation [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1710-1722. |
[10] | Li Renhua, Wang Zhengping. Normalized Solution of Fractional Schrödinger-Poisson Equations with Coercive Potential [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1723-1730. |
[11] | Jian Hui, Gong Min, Wang Li. On the Blow-Up Solutions of Inhomogeneous Nonlinear Schrödinger Equation with a Partial Confinement [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1350-1372. |
[12] | Tang Yanjuan. The Radial Symmetry and Monotonicity of Entire Solutions for Fractional Parabolic Equations [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1409-1416. |
[13] | Shen Xuhui,Ding Juntang. Blow-Up Conditions of Porous Medium Systems with Gradient Source Terms and Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1417-1426. |
[14] |
Chen Yong,Li Ying,Sheng Ying,Gu Xiangmeng.
Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a Type of Gaussian Noise with Hurst Parameter |
[15] | Yang Xuechun,Li Baode. Pointwise Estimate of Fractional Maximal Singular Integral Commutators and its Application [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1024-1036. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 165
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 39
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|