Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (5): 1230-1241.
Previous Articles Next Articles
Gao Xiaoru*(),Li Jianjun,Tu Jun
Received:
2023-09-18
Revised:
2024-04-28
Online:
2024-10-26
Published:
2024-10-16
Supported by:
CLC Number:
Gao Xiaoru, Li Jianjun, Tu Jun. Blow-Up of Solutions for a Class of Fractional Diffusion Equations with Time Dependent Coefficients[J].Acta mathematica scientia,Series A, 2024, 44(5): 1230-1241.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Caffarelli L, Silvestre L. An extension problem related to the fractional laplacian. Commun Part Diff Eq, 2007, 32(8): 1245-1260
doi: 10.1080/03605300600987306 |
[2] | Applebaum D. Levy processes-from probability to finance and quantum groups. Notices of the American Mathematical Society, 2004, 51(11): 1336-1347 |
[3] | Cabre X, Sire Y. Nonlinear equations for fractional laplacians II: Existence, uniqueness, and qualitative properties of solutions. T Am Math Soc, 2015, 367(2): 911-941 |
[4] |
Lopez-Soriano R, Ortega A. A strong maximum principle for the fractional Laplace equation with mixed boundary condition. Fract Calc Appl Anal, 2021, 24(6): 1699-1715
doi: 10.1515/fca-2021-0073 |
[5] | Fu Y Q, Pucci P. On solutions of space-fractional diffusion equations by means of potential wells. Electron J Qual Theo, 2016, 2016(70): 1-17 |
[6] | De Pablo A, Quirós F, Rodríguez A, et al. A general fractional porous medium equation. Commun Pur Appl Math, 2012, 65(9): 1242-1284 |
[7] | Tan Z, Xie M H. Global existence and blow up of solutions to semilinear fractional reaction-diffusion equation with singular potential. J Math Anal Appl, 2021, 493(2): 124548 |
[8] | 彭红玲, 樊明书. 一类半线性分数阶反应扩散方程解的整体存在性. 西南师范大学学报 (自然科学版), 2022, 47(4): 45-51 |
Peng H L, Fan M S. Global existence of solutions for a semilinear fractional reaction diffusion equation. Journal of Southwest China Normal University (Natural Science Edition), 2022, 47(4): 45-51 | |
[9] | Liao M L, Liu Q, Ye H L. Global existence and blow-up of weak solutions for a class of fractional $p$-Laplacian evolution equations. Adv Nonlinear Anal, 2020, 9(1): 1569-1591 |
[10] | Ding H, Zhou J. Global existence and blow-up for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity-II. Appl Anal, 2019, 100(12): 2641-2658 |
[11] | 李建军, 王看看, 徒君. 具有奇异势的拟线性分数阶扩散方程解的爆破性. 应用数学, 2022, 35(4): 819-826 |
Li J J, Wang K K, Tu J. Blow up of solutions to quasilinear fractional diffusion equation with singular potential. Math Appl, 2022, 35(4): 819-826 | |
[12] | 时蒙蒙, 王建. 具有对数非线性项和分数阶 $p$ 拉普拉斯算子的抛物方程解的爆破性质. 中国海洋大学学报 (自然科学版), 2022, 52(4): 138-146 |
Shi M M, Wang J. Blow up of solutions for a parabolic equation with logarithmic nonlinear terms and fractional $p$-laplacian. Periodical of Ocean University of China (Natural Science Edition), 2022, 52(4): 138-146 | |
[13] | Han Y Z. Blow-up phenomena for a reaction diffusion equation with special diffusion process. Appl Anal, 2022, 101(6): 1971-1983 |
[14] | Yang H, Ma F T, Gao W J, et al. Blow-up properties of solutions to a class of $ p $-Kirchhoff evolution equations. Electron Res Arch, 2022, 30(7): 2663-2680 |
[15] | Shen X H, Ding J T. Blow-up phenomena in porous medium equation systems with nonlinear boundary conditions. Comput Math Appl, 2019, 77(12): 3250-3263 |
[16] | Ahmed I, Mu C, Zheng P, et al. Blow-up and global existence for the non-local reaction diffusion problem with time dependent coefficient. Bound Value Probl, 2013, 2013(1): 1-6 |
[17] | Philippin G A. Blow-up phenomena for a class of fourth-order parabolic problems. P Am Math Soc, 2015, 143(6): 2507-2513 |
[18] | Levine H A. Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put $= -Au + F(u)$. Arch Ration Mech Anal, 1973, 51: 371-386 |
|