Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (5): 1216-1229.
Previous Articles Next Articles
Zhang Zongning1,Zhang Qiaoling2,*(),Jing Hefang3,Shen Qixia1
Received:
2023-12-29
Revised:
2024-04-28
Online:
2024-10-26
Published:
2024-10-16
Supported by:
CLC Number:
Zhang Zongning, Zhang Qiaoling, Jing Hefang, Shen Qixia. Research on High Reynolds Number Flow Using MRT-LBM with Viscosity Counteracting[J].Acta mathematica scientia,Series A, 2024, 44(5): 1216-1229.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Hou S, Zou Q, Chen S, et al. Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics, 1994, 118(2): 329-347
doi: 10.1006/jcph.1995.1103 |
[2] | Feldman Y, Gelfgat A Y. Oscillatory instability of a three-dimensional lid-driven flow in a cube. Physics of Fluids, 2010, 22(9): 093602 |
[3] | Shan X W. The mathematical structure of the lattices of the lattice Boltzmann method. Journal of Computational Science, 2016, 17(2): 475-481 |
[4] | Somers J A. Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann equation. Applied Scientific Research, 1993, 51(1/2): 127-133 |
[5] | 张宗宁, 李春光, 董建强. 变系数广义 KdV-Burgers 方程的格子 Boltzmann 模型. 数学物理学报, 2021, 41A(5): 1283-1295 |
Zhang Z Z, Li C G, Dong J Q. General Propagation Lattice Boltzmann Model for a Variable-Coefficient Compound KdV-Burgers Equation. Acta Math Sci, 2021, 41A(5): 1283-1295 | |
[6] | Chen S Y, Doolen G D. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech, 1998, 30(1): 329-364 |
[7] | Boghosian B M, Boon J P. Lattice Boltzmann and nonextensive diffusion. Europhysics News, 2005, 36(6): 192-194 |
[8] | Qian Y H, D'Humieres D, Lallemand P. Lattice BGK Models for the Navier-Stokes Equations. Europhysics Letters, 1992, 17(6): 479-484 |
[9] | He X, Doolen G. Lattice Boltzmann method on curvilinear coordinates system: Flow around a circular cylinder. Journal of Computational Physics, 1997, 134(2): 306-315 |
[10] | Sterling J D, Chen S. Stability analysis of lattice Boltzmann methods. Journal of Computational Physics, 1996, 123(1): 196-206 |
[11] | D'Humieres D. Generalized lattice Boltzmann equations. Rarefied Gas Dynamics-Theory and Simulations, 1994: 450-458 |
[12] | Luo L S, Liao W, Chen X, et al. Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations. Physical Review E, 2011, 83(5): 056710 |
[13] | Chai Z H, Shi B C. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear conveection-diffusion equations: Modeling, analysis and elements. Physical Review E, 2020, 102(2): 023306 |
[14] | Luo L S, Krafczyk M, Shyy W. Lattice Boltzmann Method for Computational Fluid Dynamics. John Wiley & Sons, Ltd, 2010 |
[15] | Yu H D, Luo L S, Girimaji S S. LES of turbulent square jet flow using an MRT lattice Boltzmann model. Comput Fluids, 2006, 35: 957-965 |
[16] | Jing H F, Cai Y J, Wang W H, et al. Investigation of open channel flow with unsubmerged rigid vegetation by the lattice Boltzmann method. Journal of Hydrodynamics, 2020, 4: 771-783 |
[17] |
张巧玲, 景何仿. 三维曲面腔顶盖驱动流的 MRT-LBM 研究. 计算物理, 2022, 39(4): 427-439
doi: 10.19596/j.cnki.1001-246x.8447 |
Zhang Q L, Jing H F. Flow patterns in three-dimensional lid-driven cavities with curved boundary : MRT-LBM study. Chinese Journal of Computional Physics, 2022, 39(4): 427-439
doi: 10.19596/j.cnki.1001-246x.8447 |
|
[18] | Zhang K, Feng X F, Jing H F, Jiang Y L. An improved MRT-LBM and investigation to the transition and periodicity of 2D lid-driven cavity flow with high Reynolds numbers. Chinese Journal of Physics, 2023, 84: 51-65 |
[19] | Das S S, Das P K. Fluid flow in a cavity driven by an oscillating lid-A simulation by lattice Boltzmann method. European Journal of Mechanics-B/Fluids, 2013, 39(3): 59-70 |
[20] | Premnath K N, Pattison M J, Banerjee S. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows. Physical Review E, 2009, 79(2): 026703 |
[21] | Cheng Y G, Zhang H. A viscosity counteracting approach in the lattice Boltzmann BGK model for low viscosity flow: Preliminary verification. Computers & Mathematics with Applications, 2011, 61(12): 3690-3702 |
[22] | Zhang C Z, Cheng Y G, Huang S, et al. Improving the stability of the multiple-relaxation-time lattice Boltzmann method by a viscosity counteracting approach. Advances in Applied Mathematics & Mechanics, 2016, 8(1): 37-51 |
[23] | Lallemand P, Luo L S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability. Physical review E, 2000, 61(6): 6546-6562 |
[24] | Cheng Y G, Li J P. Introducing unsteady non-uniform source terms into the lattice Boltzmann model. International Journal for Numerical Methods in Fluids, 2008, 56(6): 629-641 |
[25] | Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 1982, 48(3): 387-411 |
[26] | Erturk E, Corke T C, Gokcol C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int J Numer Meth Fluid, 2005, 48(7): 747-774 |
[27] | Guo Z L, Zheng C G, Shi B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Physics, 11(4): 366-374 |
No related articles found! |
|