Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (5): 12421282.
Previous Articles Next Articles
Zhang Yan(),Hao Huiqin^{*}(),Guo Rui()
Received:
20231027
Revised:
20240429
Online:
20241026
Published:
20241016
Supported by:
CLC Number:
Zhang Yan, Hao Huiqin, Guo Rui. The Complete Classification of Solutions to the Step Initial Condition: Analysis and Numerical Verification for the Generalized Gardner Equation in Fluid Mechanics[J].Acta mathematica scientia,Series A, 2024, 44(5): 12421282.
[1]  Infeld E, Rowlands G. Nonlinear Waves, Solitons and Chaos. New York: Cambridge University Press, 1990 
[2]  Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. New York: Cambridge University Press, 1991 
[3]  Kevrekidis P G, Frantzeskakis D J, CarreteroGonzález R. Emergent Nonlinear Phenomena in BoseEinstein Condensates. New York: Springer, 2008 
[4]  Korteweg D J, De Vries G. On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Phil Mag, 1895, 5(39): 422443 
[5]  Miura R M. Kortewegde Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J Math Phys, 1968, 9(8): 12021204 
[6]  Miura R M, Gardner C S, Kruskal M D. Kortewegde Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J Math Phys, 1968, 9(8): 12041209 
[7]  Su C H, Gardner C S. Kortewegde Vries equation and generalizations. III. Derivation of the Kortewegde Vries equation and Burgers equation. J Math Phys, 1969, 10(3): 536539 
[8]  Gardner C S. Kortewegde Vries equation and generalizations. IV. The Kortewegde Vries equation as a Hamiltonian system. J Math Phys, 1971, 12(8): 15481551 
[9]  Mishra M K, Chhabra R S, Sharma S R. Obliquely propagating ionacoustic solitons in a multicomponent magnetized plasma with negative ions. J Plasma Phys, 1994, 52(3): 409429 
[10]  Horii Z. Formulation of the Kortewegde Vries and the Burgers equations expressing mass transports from the generalized KawasakiOhta equation. Phys Lett A, 2002, 306: 4551 
[11] 
Apela J R, Ostrovsky L A, Stepanyants Y A, et al. Internal solitons in the ocean and their effect on underwater sound. J Acoust Soc Am, 2007, 121(2): 695722
pmid: 17348494 
[12]  Leblond H, Grelu P, Mihalache D. Models for supercontinuum generation beyond the slowlyvaryingenvelope approximation. Phys Rev A, 2014, 90: 053816 
[13]  Ralph E A, Pratt L. Predicting eddy detachment for an equivalent barotropic thin jet. J Nonlinear Sci, 1994, 4: 355374 
[14]  Das G C, Karmakar B. Nonlinear ionacoustic waves in multicomponent plasmas. Can J Phys, 1988, 66(1): 7981 
[15]  Chow K W, Grimshaw R H J, Ding E. Interactions of breathers and solitons in the extended Kortewegde Vries equation. Wave Motion, 2005, 43(2): 158166 
[16]  Bokaeeyan M, Ankiewicz A, Akhmediev N. Bright and dark rogue internal waves: The Gardner equation approach. Phys Rev E, 2019, 99(6): 062224 
[17]  Baldwin D, Goktas U, Hereman W, et al. Symbolic computation of exact solutions in hyperbolic and elliptic functions for nonlinear PDEs. J Symb Comput, 2004, 37: 669705 
[18]  Demler E, Maltsev A. Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices. Ann Phys, 2011, 326(7): 17751805 
[19]  Demiray S T, Bulut H. New exact solutions for generalized Gardner equation. Kuwait J Sci, 2017, 44(1): 18 
[20]  Grimshaw R. Environmental Stratified Flows. New York: Springer, 2002 
[21]  Kakutani T, Yamasaki N. Solitary waves on a twolayer fluid. J Phys Soc Jpn, 1978, 45(2): 674679 
[22]  Hamdi S, Morse B, Halphen B, et al. Analytical solutions of long nonlinear internal waves: Part I. Nat Hazards, 2011, 57(3): 597607 
[23] 
Grimshaw R, Pelinovsky D, Pelinovsky E, et al. Generation of largeamplitude solitons in the extended Kortewegde Vries equation. Chaos, 2002, 12(4): 10701076
pmid: 12779630 
[24]  Fan E G. A family of completely integrable multiHamiltonian systems explicitly related to some celebrated equations. J Math Phys, 2001, 42(9): 43274344 
[25]  Meng G Q, Gao Y T, Yu X, et al. Painlevé analysis, Lax pair, Bäcklund transformation and multisoliton solutions for a generalized variablecoefficient KdVmKdV equation in fluids and plasmas. Phys Scr, 2012, 85(5): 055010 
[26]  Li J, Xu T, Meng X H, et al. Lax pair, Bäcklund transformation and Nsolitonlike solution for a variablecoefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation. J Math Anal Appl, 2007, 336(2): 14431455 
[27]  El G A, Hoefer M A. Dispersive shock waves and modulation theory. Physica D, 2016, 333: 1165 
[28]  Holloway P E, Pelinovsky E, Talipova T. A generalized Kortewegde Vries model of internal tide transformation in the coastal zone. J Geophys Res Oceans, 1999, 104(C8): 1833318350 
[29]  Scotti A, Pineda J. Observation of very large and steep internal waves of elevation near the Massachusetts coast. Geophys Res Lett, 2004, 31(22): L22307 
[30]  Madsen P A, Fuhrman D R, Schäffer H A. On the solitary wave paradigm for tsunamis. J Geophys Res Oceans, 2008, 113(C12): C12012 
[31]  Christie D R. The morning glory of the Gulf of Carpentaria: a paradigm for nonlinear waves in the lower atmosphere. Austral Met Mag, 1992, 41: 2160 
[32]  Smyth N F, Holloway P E. Hydraulic jump and undular bore formation on a shelf break. J Phys Ocean, 1988, 18(7): 947962 
[33]  Whitham G B. Linear and Nonlinear Waves. New York: Wiley, 1974 
[34]  Whitham G B. Nonlinear dispersive waves. Math Phys Sci, 1965, 283(1393): 238261 
[35]  An X, Marchant T R, Smyth N F. Dispersive shock waves governed by the Whitham equation and their stability. Proc Math Phys Eng Sci, 2018, 474(2216): 20180278 
[36]  El G A, Hoefer M A, Shearer M. Dispersive and diffusivedispersive shock waves for nonconvex conservation laws. SIAM Review, 2017, 59(1): 361 
[37]  Onorato M, Stefania R, Fabio B. Rogue and Shock Waves in Nonlinear Dispersive Media. New York: Springer, 2016 
[38]  Gurevich A V, Pitaevskii L P. Nonstationary structure of a collisionless shock wave. Sov Phys JETP, 1974, 38: 291297 
[39]  Kamchatnov A M. New approach to periodic solutions of integrable equations and nonlinear theory of modulational instability. Phys Rep, 1997, 286(4): 199270 
[40]  Zhang Y, Hao H Q, Guo R. Periodic solutions and Whitham modulation equations for the LakshmananPorsezianDaniel equation. Phys Lett A, 2022, 450: 128369 
[41]  Zhang Y, Hao H Q. Whitham modulation theory and periodic solutions for the fifthorder nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain. Nonlinear Dyn, 2023, 111: 1246112477 
[42]  Wang D S, Xu L, Xuan Z. The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation. J Nonlinear Sci, 2022, 32(1): 146 
[43]  Kamchatnov A M. Dispersive shock wave theory for nonintegrable equations. Phys Rev E, 2019, 99(1): 012203 
[44]  El G A, Gammal A, Khamis E G, et al. Theory of optical dispersive shock waves in photorefractive media. Phys Rev A, 2007, 76(5): 053813 
[45]  Driscoll C F, O' Neil T M. Modulational instability of cnoidal wave solutions of the modified Kortewegde Vries equation. J Math Phys, 1975, 17(7): 11961200 
[46]  Kamchatnov A M, Spire A, Konotop V V. On dissipationless shock waves in a discrete nonlinear Schrödinger equation. J Phys A, 2004, 37(21): 5547 
[47]  Marchant T R. Undular bores and the initialboundary value problem for the modified Kortewegde Vries equation. Wave Motion, 2008, 45(4): 540555 
[48]  Kodama Y, Pierce V U, Tian F R. On the Whitham equations for the defocusing complex modified KdV equation. SIAM J Math Anal, 2009, 40(5): 17501782 
[49]  Marchant T R, Smyth N F. The extended Kortewegde Vries equation and the resonant flow of a fluid over topography. J Fluid Mech, 1990, 221: 263287 
[50]  Kamchatnov A M, Kuo Y H, Lin T C, et al. Undular bore theory for the Gardner equation. Phys Rev E, 2012, 86(3): 036605 
[51]  Matveev B V. 30 years of finitegap integration theory. Phil Trans R Soc A, 2008, 366(1867): 837875 
[52]  Kamchatnov A M, Kraenkel R A. On the relationship between a $ 2\times2 $ matrix and secondorder scalar spectral problems for integrable equations. J Phys A: Math Gen, 2002, 35(2): L13L18 
[53]  Ercolani N M, Jin S, Levermore C D, et al. The zerodispersion limit for the odd flows in the focusing ZakharovShabat hierarchy. Int Math Res Notices, 2003, 47: 2529 
[54]  Grava T, Klein C. Numerical solution of the small dispersion limit of Kortewegde Vries and Whitham equations. Commun Pure Appl Math, 2007, 60(11): 16231664 
[55]  Fornberg B, Whitham G B. A numerical and theoretical study of certain nonlinear wave phenomena. Philos Trans R Soc London Ser A, 1978, 289(1361): 373404 
[1]  Wang Li. The Inverse Problem for the Supersonic Plane Flow Past a Curved Wedge [J]. Acta mathematica scientia,Series A, 2018, 38(4): 679686. 
