Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (4): 994-1011.
Previous Articles Next Articles
Yin Ruixia1,Wang Zedong1,Zhang Long1,2,*()
Received:
2023-07-03
Revised:
2024-04-25
Online:
2024-08-26
Published:
2024-07-26
Supported by:
CLC Number:
Yin Ruixia, Wang Zedong, Zhang Long. A Periodic Stage Structure Single-Population Model with Infinite Delay and Feedback Control[J].Acta mathematica scientia,Series A, 2024, 44(4): 994-1011.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Vance R R, Coddington E A. A nonautonomous model of population growth. J Math Biol, 1989, 27(5): 491-506
pmid: 2794800 |
[2] | Chen F D, Yang J H, Chen L J. Note on the persistent property of a feedback control system with delays. Nonlinear Anal: Real World Appl, 2010, 11(2): 1061-1066 |
[3] | Liu S Q, Chen L S, Agarwal R. Recent progress on stage-structured population dynamics. Math Comput Model, 2002, 36: 1319-1460 |
[4] | Cui J A, Chen L S, Wang W D. The effect of dispersal on population growth with stage-structure. Comput Math Appl, 2000, 39(1/2): 91-102 |
[5] | Wang C Y, Li L R, Zhang Q Y. Dynamical behaviour of a Lotka-Volterra competitive-competitive-cooperative model with feedback controls and time delays. J Biol Dyn, 2019, 13(1): 43-68 |
[6] | Gopalsamy K, Weng P X. Feedback regulation of logistic growth. Internat J Math Sci, 1993, 16(1): 177-192 |
[7] | Jana S, Kar T K. A mathematical study of a prey-predator model in relevance to pest control. Nonlinear Dyn, 2013, 74: 667-683 |
[8] | 傅金波, 陈兰荪. 基于生态环境和反馈控制的多种群竞争系统的正周期解. 数学物理学报, 2017, 37A(3): 553-561 |
Fu J B, Chen L S. Positive periodic solution of multiple species comptition system with ecological environment and feedback controls. Acta Math Sci, 2017, 37A(3): 553-561 | |
[9] | Basir F A, Noor M H. A model for pest control using integrated approach: Impact of latent and gestation delays. Nonlinear Dyn, 2022, 108(2): 1805-1820 |
[10] | Teng Z D, Chen L S. Permanence and extinction of periodic predator-prey systems in a patchy environment with delay. Nonlinear Anal: Real World Appl, 2003, 4(2): 335-364 |
[11] | Pu L Q, Adam B, Lin Z Q. Extinction in a nonautonomous competitive system with toxic substance and feedback control. J Appl Anal Comput, 2019, 9(5): 1838-1854 |
[12] | Chen F D, Li Z, Huang Y J. Note on the permanence of a competitive system with infinite delay and feedback controls. Nonlinear Anal: Real World Appl, 2007, 8(2): 680-687 |
[13] | Guo K, Song K Y, Ma W B. Existence of positive periodic solutions of a delayed periodic Microcystins degradation model with nonlinear functional responses. Appl Math Lett, 2022, 131: 108056 |
[14] | 王长有, 李楠, 蒋涛, 杨强. 一类具有时滞及反馈控制的非自治非线性比率依赖食物链模型. 数学物理学报, 2022, 42A(1): 245-268 |
Wang C Y, Li N, Jiang T, Yang Q. On a Nonlinear non-autonomous ratio-dependent food chain model with delays and feedback controls. Acta Math Sci, 2022, 42A(1): 245-268 | |
[15] | Shi L, Qi L X, Zhai S L. Periodic and almost periodic solutions for a non-autonomous respiratory disease model with a lag effect. Acta Math Sci, 2022, 42B(1): 187-211 |
[16] | Zhang L, Teng Z D. Permanence for a delayed periodic predator-prey model with prey dispersal in multi-patches and predator density-independent. J Math Anal Appl, 2008, 338(1): 175-193 |
[17] | Hu H X, Teng Z D, Jiang H J. Permanence of the nonautonomous competitive systems with infinite delay and feedback controls. Nonlinear Anal: Real World Appl, 2009, 10(4): 2420-2433 |
[18] | Liu Z Q, Kang S M. Applications of Schauder's fixed-point theorem with respect to iterated functional equations. Appl Math Lett, 2001, 14(8): 955-962 |
[19] | 张恭庆, 林源渠. 泛函分析讲义. 北京: 北京大学出版社, 2004 |
Zhang G Q, Lin Y Q. Lecture Notes on Functional Analysis. Beijing: Peking University Press, 2004 | |
[20] | Hale J K. Introduction to Functional Differential Equations. New York: Springer, 1993 |
[21] | Smith H L. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Providence, RI: American Mathematical Society, 1995 |
[22] |
滕志东, 陈兰荪. 高维时滞周期的 Kolmogorov 型系统的正周期解. 应用数学学报, 1999, 22(3): 446-456
doi: 10.12387/C1999072 |
Teng Z D, Chen L S. The positive periodic solutions of periodic Kolmogorov type systems with delays. Acta Math Appl Sin, 1999, 22(3): 446-456
doi: 10.12387/C1999072 |
|
[23] | Wu H, Chen W, Wang N, et al. A delayed stage-structure brucellosis model with interaction among seasonality, time-varying incubation and density-dependent growth. Int J Biomath, 2023, 16(6): 2250114 |
[24] | Pandey S, Ghosh U, Das D, et al. Rich dynamics of a delay-induced stage-structure prey-predator model with cooperative behaviour in both species and the impact of prey refuge. Math Comput Simul, 2024, 216: 49-76 |
[25] | Hu D P, Li Y Y, Liu M, et al. Stability and Hopf bifurcation for a delayed predator-prey model with stage structure for prey and Ivlev-type functional response. Nonlinear Dynam, 2020, 99: 3323-3350 |
|