Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (4): 1012-1036.
Previous Articles Next Articles
Li Jiaofen,Kong Lvyuan,Song Jiashuo,Wen Yaqiong*()
Received:
2023-10-10
Revised:
2023-12-22
Online:
2024-08-26
Published:
2024-07-26
Supported by:
CLC Number:
Li Jiaofen, Kong Lvyuan, Song Jiashuo, Wen Yaqiong. A Riemannian Optimization Approach for a Class of Matrix Trace Function Extremum Problem in Feature Extraction[J].Acta mathematica scientia,Series A, 2024, 44(4): 1012-1036.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Ye J. Least squares linear discriminant analysis//Proceedings of the 24th International Conference on Machine Learning. 2007: 1087-1093 |
[2] | Ma Z, Nie F, Yang Y, et al. Discriminating joint feature analysis for multimedia data understanding. IEEE Transactions on Multimedia, 2012, 14(6): 1662-1672 |
[3] | Ma Z, Yang Y, Sebe N, et al. Multimedia event detection using a classifier-specific intermediate representation. IEEE Transactions on Multimedia, 2013, 15(7): 1628-1637 |
[4] | Ji S, Tang L, Yu S, Ye J. A shared-subspace learning framework for multi-label classification. ACM Transactions on Knowledge Discovery from Data (TKDD), 2010, 4(2): 1-29 |
[5] |
Seung H S, Lee D D. The manifold ways of perception. Science, 2000, 290(5500): 2268-2269
pmid: 11188725 |
[6] |
Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326
doi: 10.1126/science.290.5500.2323 pmid: 11125150 |
[7] | Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering//Advances in Neural Information Processing Systems. Cambridge: MIT press, 2001, 14 |
[8] | Zhang S, Ma Z, Tan H. On the equivalence of HLLE and LTSA. IEEE Transactions on Cybernetics, 2017, 48(2): 742-753 |
[9] | Lai Z, Mo D, Wong W K, et al. Robust discriminant regression for feature extraction. IEEE Transactions on Cybernetics, 2017, 48(8): 2472-2484 |
[10] | Nie F, Huang H, Cai X, Ding C H. Efficient and robust feature selection via joint $ L_{2, 1} $ -norms minimization//Advances in Neural Information Processing Systems, 2010: 1813-1821 |
[11] | Sato K, Sato H. Structure-preserving $ H^{2} $ optimal model reduction based on the Riemannian trust-region method. IEEE Transactions on Automatic Control, 2017, 63(2): 505-512 |
[12] | Sato H, Sato K. Riemannian gradient-based online identification method for linear systems with symmetric positive-definite matrix// 2019 IEEE 58th Conference on Decision and Control (CDC), 2019: 3593-3598 |
[13] | Sato K. Riemannian optimal model reduction of linear port-Hamiltonian systems. Automatica, 2018, 93: 428-434 |
[14] | Sato K. Riemannian optimal control and model matching of linear port-Hamiltonian systems. IEEE Transactions on Automatic Control, 2017, 62(12): 6575-6581 |
[15] | Sato K, Sato H, Damm T. Riemannian optimal identification method for linear systems with symmetric positive-definite matrix. IEEE Transactions on Automatic Control, 2020, 65(11): 4493-4508 |
[16] | Chiang C Y, Lin M M, Jin X Q. Riemannian inexact Newton method for structured inverse eigenvalue and singular value problems. BIT Numerical Mathematics, 2019, 59: 675-694 |
[17] | Ishteva M, Absil P A, Huffel S V, Lathauwer L D. Best low multilinear rank approximation of higher-order tensors, based on the Riemannian trust-region scheme. SIAM Journal on Matrix Analysis and Applications, 2011, 32(1): 115-135 |
[18] | Sato H, Iwai T. A Riemannian optimization approach to the matrix singular value decomposition. SIAM Journal on Optimization, 2013, 23(1): 188-212 |
[19] | Wang Y, Zhao Z, Bai Z J. Riemannian Newton-CG methods for constructing a positive doubly stochastic matrix from spectral data. Inverse Problems, 2020, 36(11): 115006 |
[20] | Yao T T, Bai Z J, Zhao Z, Ching W K. A riemannian fletcher-reeves conjugate gradient method for doubly stochastic inverse eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 2016, 37(1): 215-234 |
[21] | Yao T T, Bai Z J, Jin X Q, Zhao Z. A geometric Gauss-Newton method for least squares inverse eigenvalue problems. BIT Numerical Mathematics, 2020, 60: 825-852 |
[22] | Zhao Z, Jin X Q, Bai Z J. A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems. SIAM Journal on Numerical Analysis, 2016, 54(4): 2015-2035 |
[23] | Zhao Z, Bai Z J, Jin X Q. A Riemannian inexact Newton-CG method for constructing a nonnegative matrix with prescribed realizable spectrum. Numerische Mathematik, 2018, 140(4): 827-855 |
[24] | Zhao Z, Jin X Q, Yao T T. A Riemannian under-determined BFGS method for least squares inverse eigenvalue problems. BIT Numerical Mathematics, 2022, 62(1): 311-337 |
[25] | Zhao Z, Yao T T, Bai Z J, Jin X Q. A Riemannian inexact Newton dogleg method for constructing a symmetric nonnegative matrix with prescribed spectrum. Numerical Algorithms, 2023, 92: 1951-1981 |
[26] | Jiang Y L, Xu K L. Riemannian modified Polak-Ribière-Polyak conjugate gradient order reduced model by tensor techniques. SIAM Journal on Matrix Analysis and Applications, 2020, 41(2): 432-463 |
[27] | Oviedo H. Global convergence of Riemannian line search methods with a Zhang-Hager-type condition. Numerical Algorithms, 2022, 91(3): 1183-1203 |
[28] | Sato H. Riemannian Optimization and Its Applications. Brelin: Springer, 2021 |
[29] | Sato H, Iwai T. A new, globally convergent Riemannian conjugate gradient method. Optimization, 2015, 64(4): 1011-1031 |
[30] | Sato H. A Dai-Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions. Computational Optimization and Applications, 2016, 64(1): 101-118 |
[31] | Sakai H, Iiduka H. Hybrid Riemannian conjugate gradient methods with global convergence properties. Computational Optimization and Applications, 2020, 77(3): 811-830 |
[32] | Zhu X. A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Computational optimization and Applications, 2017, 67(1): 73-110 |
[33] | Vandereycken B. Low-rank matrix completion by Riemannian optimization. SIAM Journal on Optimization, 2013, 23(2): 1214-1236 |
[34] | Zhang H, Hager W W. A nonmonotone line search technique and its application to unconstrained optimization. SIAM Journal on Optimization, 2004, 14(4): 1043-1056 |
[35] | Absil P A, Mahony R, Sepulchre R. Optimization Algorithms on Matrix Manifolds. Princeton: Princeton University Press, 2009 |
[36] | Ring W, Wirth B. Optimization methods on Riemannian manifolds and their application to shape space. SIAM Journal on Optimization, 2012, 22(2): 596-627 |
[37] | Absil P A, Mahony R, Trumpf J. An extrinsic look at the Riemannian Hessian//International Conference on Geometric Science of Information. Berlin: Springer, 2013: 361-368 |
[38] | Nocedal J, Wright S J. Numerical Optimization. Springer, 1999 |
[39] | Grippo L, Lampariello F, Lucidi S. A nonmonotone line search technique for Newton's method. SIAM Journal on Numerical Analysis, 1986, 23(4): 707-716 |
[40] | Zhang L, Zhou W, Li D. Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search. Numerische Mathematik, 2006, 104(4): 561-572 |
[41] | 王松桂, 吴密霞, 贾忠贞. 矩阵不等式. 北京: 科学出版社, 2006 |
Wang S G, Wu M X, Jia Z Z. Matrix Inequalities. Beijing: Science Press, 2006 | |
[42] | Wen Z, Yin W. A feasible method for optimization with orthogonality constraints. Mathematical Programming, 2013, 142(1/2): 397-434 |
[43] | Li J F, Li W, Vong S W, et al. A Riemannian optimization approach for solving the generalized eigenvalue problem for nonsquare matrix pencils. Journal of Scientific Computing, 2020, 82: 1-43 |
[44] | Boumal N, Mishra B, Absil P A, Sepulchre R. Manopt, a Matlab toolbox for optimization on manifolds. Journal of Machine Learning Research, 2014, 15(1): 1455-1459 |
[1] | Yueyuan Liu,Kai Wang,Shujuan Qin,Jiaofen Li. An Effective Algorithm for Generalized Sylvester Equation Minimization Problem Under Columnwise Orthogonal Constraints [J]. Acta mathematica scientia,Series A, 2021, 41(2): 479-495. |
[2] |
Ya Gao,Jing Mao,Chunlan Song.
Existence and Uniqueness of Solutions to the Constant Mean Curvature Equation with Nonzero Neumann Boundary Data in Product Manifold |
|