Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (6): 1855-1868.
Previous Articles Next Articles
Zhang Cong1(),Ding Yiming2,*()
Received:
2022-10-26
Revised:
2023-03-23
Online:
2023-12-26
Published:
2023-11-16
Supported by:
CLC Number:
Zhang Cong, Ding Yiming. Non-stationarity Measurement Based on Law of Iterated Logarithm[J].Acta mathematica scientia,Series A, 2023, 43(6): 1855-1868.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 丁义明, 范文涛, 谭秋衡, 等. 数据流的非平稳性度量. 数学物理学报, 2010, 30A(5): 1364-1376 |
Ding Y M, Fan W T, Tan Q H, et al. Nonstationarity measure of data stream. Acta Math Sci, 2010, 30A(5): 1364-1376 | |
[2] | 王晶. 非平稳时间序列的多尺度分析. 北京: 北京交通大学, 2015 |
Wang J. Multiscale Analysis of Nonstationary Time Series. Beijing: Beijing Jiaotong University, 2015 | |
[3] | 刘罗曼. 时间序列平稳性检验. 沈阳师范大学学报(自然科学版), 2010, 28(3): 357-359 |
Liu L M. Time series smoothness test. Journal of Shenyang Normal University (Natural Science Edition), 2010, 28(3): 357-359 | |
[4] | 谭秋衡. 时间序列的非平稳性度量及其应用. 武汉: 中国科学院研究生院(武汉物理与数学研究所), 2013 |
Tan Q H. Non-stationary Measurement of Time Series and Its Application. Wuhan: Graduate School of Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics), 2013 | |
[5] | 吴量. 基于非平稳性度量的EMD趋势噪声分解. 武汉: 华中师范大学, 2013 |
Wu L. EMD Trend Noise Decomposition Based on Non-smoothness Measure. Wuhan: Central China Normal University, 2013 | |
[6] | 兰军, 谭秋衡, 董前进. 基于非平稳度量的灌溉用水量预测模型选择. 武汉大学学报(工学版), 2014, 47(6): 721-725 |
Lan J, Tan Q H, Dong Q J. Selection of forecasting models for irrigation water consumption based on nonstationarity measure. Engineering Journal of Wuhan University, 2014, 47(6): 721-725 | |
[7] | 吕洋. 基于非平稳性度量的数字印章信息匹配. 武汉: 武汉理工大学, 2020 |
Lv Y. Information Matching of Digital Stamps Based on Non-smoothness Metric. Wuhan: Wuhan University of Technology, 2020 | |
[8] | Tan Q H, Jiang H J, Ding Y M. Model selection method based on maximal information coefficient of residuals. Acta Mathematica Scientia, 2014, 34B(2): 579-592 |
[9] | Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley-Interscience, 2006 |
[10] | 谭秋衡, 丁义明. 基于非平稳性度量的彩票数据实证分析. 数学物理学报, 2014, 34A(1): 207-216 |
Tan Q H, Ding Y M. Empirical analysis of lottery data based on non-stationarity measurement. Acta Math Sci, 2014, 34A(1): 207-216 | |
[11] | 谭秋衡, 吴量, 李波. 基于EMD及非平稳性度量的趋势噪声分解方法. 数学物理学报, 2016, 36A(4): 783-794 |
Tan Q H, Wu L, Li B. Trend noise decomposition method based on EMD and non-stationarity measure. Acta Math Sci, 2016, 36A(4): 783-794 | |
[12] | 邹永杰. 用非平稳度量区分白噪声过程与鞅差分序列. 武汉: 武汉理工大学, 2011 |
Zou Y J. Distinguishing White Noise Processes from Harnessed Difference Series Using a Non-smooth Metric. Wuhan: Wuhan University of Technology, 2011 | |
[13] | 张小彩. 概率中的一些不等式. 郑州: 郑州大学, 2010 |
Zhang X C. Some Inequalities in Probability. Zhengzhou: Zhengzhou University, 2010 | |
[14] |
Yang X W, Song S, Zhang H M. Law of iterated logarithm and model selection consistency for generalized linear models with independent and dependent responses. Frontiers of Mathematics in China, 2021, 16: 825-856
doi: 10.1007/s11464-021-0900-2 |
[15] | Lorek P, Łoś G, Gotfryd K, Zagórski F. On testing pseudorandom generators via statistical tests based on the arcsine law. 2020, 380: 112968 |
[16] | Deo C M. A note on stationary Gaussian sequences. The Annals of Probability, 1974, 2(5): 954-957 |
[17] |
Dzindzalieta D, Ileikis M, Jukeviius T. Optimal probability inequalities for random walks related to problems in extremal combinatorics. Siam Journal on Discrete Mathematics, 2011, 26(2): 828-837
doi: 10.1137/110834913 |
[18] | Teicher H. On the law of the iterated logarithm. The Annals of Probability, 1974, 2(4): 714-728 |
[19] | Zhou Z, Zhou Z, Wu L. Calibration for parameter estimation of signals with complex noise via nonstationarity measure. Complexity, 2021, 2021: Article ID 8840757 |
[20] | 王志刚. 自回归模型的定阶方法选择及弱信号探测. 武汉: 武汉理工大学, 2020 |
Wang Z G. Selection of Fixed-Order Methods for Autoregressive Models and Weak Signal Detection. Wuhan: Wuhan University of Technology, 2020 | |
[21] |
Alsmeyer G, Buckmann F. An arcsine law for Markov random walks. Stochastic Processes and Their Applications, 2019, 129(1): 223-239
doi: 10.1016/j.spa.2018.02.014 |
[1] | Jinhui Zheng,Jinghu Yu,Yiming Ding,Zeyu Bao. Research on Change-Point Detection for Parameters in Regression Model [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1124-1134. |
[2] | Yonghong Liu,Yiheng Tang,Qingqing Zhang. Local Functional Law of the Iterated Logarithm for Increments of Two-Parameter Brownian Motion [J]. Acta mathematica scientia,Series A, 2021, 41(3): 874-881. |
[3] | Fengbing Li,Yonghong Liu. Quasi Sure Local Strassen's Law of the Iterated Logarithm for Increments of a Brownian Motion [J]. Acta mathematica scientia,Series A, 2020, 40(2): 484-491. |
[4] | LI Wei, GAN Shi-Xin. Asymptotic Behavior of Moving Average Processes Associated to Heavy-Tailed Distributions [J]. Acta mathematica scientia,Series A, 2013, 33(4): 787-792. |
[5] | ZHOU Hui, LIN Zheng-Yan. Precise Asymptotics in the Law of Logarithm for U-statistics [J]. Acta mathematica scientia,Series A, 2012, 32(1): 41-54. |
[6] | DING Yi-Ming, FAN Wen-Tao, TAN Qiu-Heng, WU Ke-Kun, ZOU Yong-Jie. Nonstationarity Measure of Data Stream [J]. Acta mathematica scientia,Series A, 2010, 30(5): 1364-1376. |
[7] | Zhu Qiang; Gao Fuqing. A Chung Type Law of the Iterated Logarithm of MLE in Random Censoring Model with Incomplete Information [J]. Acta mathematica scientia,Series A, 2007, 27(4): 672-681. |
[8] |
Liu Yonghong; Gao Fuqing.
Local Strassen's Law of the Iterated Logarithm for Diffusion Processes in H [J]. Acta mathematica scientia,Series A, 2006, 26(5): 785-793. |
|