Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (6): 1869-1879.
Previous Articles Next Articles
Xiong Caiquan(),Gu Xiaohui(),Wu Xinyun*()
Received:
2023-02-10
Revised:
2023-04-10
Online:
2023-12-26
Published:
2023-11-16
Supported by:
CLC Number:
Xiong Caiquan, Gu Xiaohui, Wu Xinyun. Node Importance Evaluation Method Based on Neighborhood Hierarchical Distribution Gravity Model[J].Acta mathematica scientia,Series A, 2023, 43(6): 1869-1879.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks. Nature Physics, 2010, 6(11): 888-893
doi: 10.1038/nphys1746 |
[2] | Chen D B, Lü L Y, Shang M H, et al. Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and Its Applications, 2012, 391(4): 1777-1787 |
[3] | 罗浩, 闫光辉, 张萌, 等. 融合多元信息的多关系社交网络节点重要性研究. 计算机研究与发展, 2020, 57(5): 954-970. |
Luo H, Yan G H, Zhang M, et al. Research on node importance fused multi-information for multi-relational social networks. Computer Research and Development, 2020, 57: 954-970 | |
[4] | 王希良, 李季瑶, 廉梦珂, 等. 基于复杂网络模型的地铁系统脆弱性分析. 城市轨道交通研究, 2021, 24(8): 47-50 |
Wang X L, Li J Y, Lian M K, et al. Vulnerability analysis of metro system based on complex network model. Urban Mass Transit, 2021, 24(8): 47-50 | |
[5] | 刘影, 王伟, 尚明生, 等. 复杂网络上疫情与舆情的传播及其基于免疫的控制策略. 复杂系统与复杂性科学, 2016, 13(1): 74-83 |
Liu Y, Wang W, Shang M S, et al. Controlling epidemic outbreaks and publics sentiment spreading by vaccination in complex network. Complex System and Complexity Science, 2016, 13(1): 74-83 | |
[6] | 何铭, 邹艳丽, 梁明月, 等. 基于多属性决策的电力网络关键节点识别. 复杂系统与复杂性科学, 2020, 17(3): 27-37 |
He M, Zou Y L, Liang M Y, et al. Critical node identification of a power grid based on multi-attribute decision. Complex System and Complexity Science, 2020, 17(3): 27-37 | |
[7] |
罗金亮, 金家才, 王雷. 基于功能贡献度的网络化防空节点重要性评价方法. 计算机科学, 2018, 45(2): 175-180
doi: 10.11896/j.issn.1002-137X.2018.02.031 |
Luo J L, Jin J C, Wang L. Evaluation method for node importance in air defense networks based on functional contribution degree. Computer Science, 2018, 45(2): 175-180
doi: 10.11896/j.issn.1002-137X.2018.02.031 |
|
[8] |
Bonacich P. Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 1972, 2: 113-120
doi: 10.1080/0022250X.1972.9989806 |
[9] |
Freeman L C. A set of measures of centrality based on betweenness. Sociometry, 1977, 40(1): 35-41
doi: 10.2307/3033543 |
[10] | Duan M, Chang L L, Jin Z. Turing patterns of an SI epidemic model with cross-diffusion on complex networks. Physica A: Statistical Mechanics and Its Applications, 2019, 533: 122023 |
[11] |
Lü L Y, Zhou T, Zhang Q M, et al. The H-index of a network node and its relation to degree and coreness. Nature Communications, 2016, 7: 10168
doi: 10.1038/ncomms10168 pmid: 26754161 |
[12] |
Zeng A, Zhang C J. Ranking spreaders by decomposing complex networks. Physics Letters A, 2013, 377(14): 1031-1035
doi: 10.1016/j.physleta.2013.02.039 |
[13] | Wang Z X, Zhao Y, Xi J K, et al. Fast ranking influential nodes in complex networks using $k$-shell iteration. Physica A: Statistical Mechanics and Its Applications, 2016, 416: 171-181 |
[14] |
Zareie A, Sheikhahmadi A, Khamforoosh K. Influence maximization in social networks based on TOPSIS. Expert Systems with Application, 2018, 108: 96-107
doi: 10.1016/j.eswa.2018.05.001 |
[15] |
Fei L, Lu J, Feng Y. An extended best-worst multi-criteria decision-making method by belief functions and its application in hospital service evaluation. Computers Industrial Engineering, 2022, 142: 106355
doi: 10.1016/j.cie.2020.106355 |
[16] | Ma L L, Ma C, Zhang H F, et al. Identifying influential spreaders in complex networks based on gravity formula. Physica A: Statistical Mechanics and Its Applications, 2016, 451: 205-212 |
[17] |
Li Z, Ren T, Ma X Q, et al. Identifying influential spreaders by gravity model. Scientific Reports, 2019, 9(1): 8387
doi: 10.1038/s41598-019-44930-9 pmid: 31182773 |
[18] |
Liu F, Wang Z, Deng Y. GMM: A generalized mechanics model for identifying the important of nodes in complex networks. Knowledge Based System, 2020, 193: 105464
doi: 10.1016/j.knosys.2019.105464 |
[19] |
Yang X, Xiao F Y. An improved gravity model to identify influential nodes in complex networks based on k-shell method. Knowledge Based Systems, 2021, 227: 107198
doi: 10.1016/j.knosys.2021.107198 |
[20] | 阮逸润, 老松杨, 汤俊, 等. 基于引力方法的复杂网络节点重要度评估方法. 物理学报, 2022, 71(17): 298-309 |
Ruan Y R, Lao S Y, Tang J, et al. Node importance ranking method in complex network based on gravity model. Acta Physica Sinica, 2022, 71(17): 298-309 | |
[21] |
Chen D B, Gao H, Lu L Y, et al. Identifying influential nodes in large-scale directed networks: The role of clustering. Plos One, 2013, 8(10): e77455
doi: 10.1371/journal.pone.0077455 |
[22] |
Petermann T, De Los Rios P. Role of clustering and gridlike ordering in epidemic spreading. Physical Review E, 2004, 69(6): 066116
doi: 10.1103/PhysRevE.69.066116 |
[23] |
Zhou T, Yan G, Wang B H. Maximal planar networks with large clustering coefficient and power-law degree distribution. Physical Review E, 2005, 71(4): 046141
doi: 10.1103/PhysRevE.71.046141 |
[24] |
Watts D J, Strogatz S H. Collective dynamics of `small-world' networks. Nature, 1998, 393: 440-442
doi: 10.1038/30918 |
[25] | Bae J, Kim S. Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Physica A: Statistical Mechanics and Its Applications, 2014, 395: 549-559 |
[26] |
Li X, Liu Y Y, Zhao C L, et al. Locating multiple sources of contagion in complex networks under the SIR model. Applied Sciences, 2019, 9(20): 4472
doi: 10.3390/app9204472 |
[27] |
Kamnitui N, Genest C, Jaworski P, et al. On the size of the class of bivariate extreme-value copulas with a fixed value of Spearman's rho or Kendall's tau. Journal of Mathematical Analysis and Applications, 2019, 472(1): 920-936
doi: 10.1016/j.jmaa.2018.11.057 |
[1] | Cai-Quan XIONG Xiao-Hui GU Xin-Yun Wu. Node importance evaluation method based on gravity model and neighborhood hierarchical distribution [J]. Acta mathematica scientia,Series A, , (): 0-0. |
|