Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (1): 143-158.
Previous Articles Next Articles
Received:
2022-01-06
Revised:
2022-07-22
Online:
2023-02-26
Published:
2023-03-07
Supported by:
CLC Number:
Zhao Qian, Yan Lu. Nonlocal KP-type Equations with Generalized Bilinear Derivative[J].Acta mathematica scientia,Series A, 2023, 43(1): 143-158.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Hirota R. Direct methods in soliton theory// Bullough R K and Caudrey P J. Solitons. Berlon: Springer-Verlag, 1980: 157-176 |
[2] |
Hirota R. Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett, 1971, 27(18): 1192-1194
doi: 10.1103/PhysRevLett.27.1192 |
[3] | Matsuno Y. Bilinear Transformation Method. New York: Academic Press, 1984 |
[4] |
Satsuma J. $N$-soliton solution of the two-dimensional Korteweg-de Vries equation. J Phys Soc Japan, 1976, 40: 286-290
doi: 10.1143/JPSJ.40.286 |
[5] |
Hirota R. Exact solution of the sine-Gordon equations for multiple collsions of solitons. J Phys Soc Japan, 1972, 33: 1459-1463
doi: 10.1143/JPSJ.33.1459 |
[6] |
Hirota R. Exact $N$-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J Math Phys, 1973, 14: 810-814
doi: 10.1063/1.1666400 |
[7] |
Hietarinta J. A search for bilinear equations passing Hirota's three-soliton condition. I. KdV-type bilinear equations. J Math Phys, 1987, 28: 1732-1742
doi: 10.1063/1.527815 |
[8] |
Hietarinta J. A search for bilinear equations passing Hirota's three-soliton condition. II. mKdV-type bilinear equations. J Math Phys, 1987, 28: 2094-2101
doi: 10.1063/1.527421 |
[9] |
Hietarinta J. A search for bilinear equations passing Hirota's three-soliton condition. III. Sine-Gordon-type bilinear equations. J Math Phys, 1987, 28: 2586-2592
doi: 10.1063/1.527750 |
[10] |
Hietarinta J. A search for bilinear equations passing Hirota's three-soliton condition. IV. Complex bilinear equations. J Math Phys, 1988, 29: 628-635
doi: 10.1063/1.528002 |
[11] | Hu X B. Hirota-type equations, soliton solutions, Bäcklund transformations and conservation laws. J Part Diff Eq, 1990, 3: 87-95 |
[12] | Hu X B. Generalized Hirota's bilinear equations and their soliton solutions. J Phys A, 1993, 26: 465-471 |
[13] | Hirota R. Fundamental properties of the binary operators in soliton theory and their generalization. //Takeno S. Dynamical Problems in Soliton Systems. Berlin: Springer-Verlag, 1985: 42-49 |
[14] | Ma W X. Generalized bilinear differential equations. Stud Nonlinear Sci, 2011, 2: 140-144 |
[15] |
Xia Q, Lou S Y. Localized excitations of a generalised Jimbo-Miwa equation. Commun Theor Phys, 2018, 70: 1-6
doi: 10.1088/0253-6102/70/1/1 |
[16] | Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersive media. Sov Phys Dokl, 1970, 15: 539-541 |
[17] |
Ablowitz M J, Segur H. On the evolution of packets of water waves. J Fluid Mech, 1979, 92: 691-715
doi: 10.1017/S0022112079000835 |
[18] |
Biondini G, Pelinovsky D E. Kadomtsev-Petviashvili equation. Scholarpedia, 2008, 3: 6539-6547
doi: 10.4249/scholarpedia.6539 |
[19] |
Pelinovsky D E, Stepanyants Y A, Kivshar Y S. Self-focusing of plane dark solitons in nonlinear defocusing media. Phys Rev E, 1995, 51: 5016-5026
pmid: 9963213 |
[20] | Druyma V S. On the analytical solution of the two-dimensional Korteweg-de Vries equation. Sov Phys JETP Lett, 1974, 19: 753-757 |
[21] |
Ablowitz M J, Villarroel J. On the Kadomtsev Petviashvili equation and associated constraints. Stud Appl Math, 1991, 85: 195-213
doi: 10.1002/sapm1991853195 |
[22] |
Freeman N C, Nimmo J J C. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique. Phys Lett A, 1983, 95: 1-3
doi: 10.1016/0375-9601(83)90764-8 |
[23] | Ablowitz M, Segur H. Solitons and the Inverse Scattering Transform. Philadephia: Society for Industrial and Applied Mathematics, 1981 |
[24] |
Kodama Y, Williams L. KP solitons and total positivity for the Grassmannian. Invent Math, 2014, 198: 637-699
doi: 10.1007/s00222-014-0506-3 |
[25] |
Date E, Jimbo M, Kashiwara M, Miwa T. Transformation groups for soliton equations: III. Operator approach to the Kadomtsev-Petviashvili equation. J Phys Soc Japan, 1981, 50: 3806-3812
doi: 10.1143/JPSJ.50.3806 |
[26] |
Date E, Jimbo M, Kashiwara M, Miwa T. Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type. Physica D, 1982, 4: 343-365
doi: 10.1016/0167-2789(82)90041-0 |
[27] | Hirota R. The Direct Method in Soliton Theory. New York: Cambridge University Press, 2004 |
[28] | Date E, Kashiwara M, Miwa T. Transformation groups for soliton equations: II. Vertex operators and $\tau$ functions. Proc Japan Acad Ser A Math Sci, 1981, 57: 387-392 |
[29] |
Hirota R. Soliton solutions to the BKP equations: I. The Pfaffian techniqueon. J Phys Soc Japan, 1989, 58: 2285-2296
doi: 10.1143/JPSJ.58.2285 |
[30] |
Hirota R. Soliton solutions to the BKP equations: II. The Integral Equation. J Phys Soc Japan, 1989, 58: 2705-2712
doi: 10.1143/JPSJ.58.2705 |
[31] |
Gilson C R, Nimmo J J C. Lump solutions of the BKP equation. Phys Lett A, 1990, 147: 472-476
doi: 10.1016/0375-9601(90)90609-R |
[32] |
Loris I, Willox R. Symmetry reductions of the BKP hierarchy. J Math Phys, 1999, 40: 1420-1431
doi: 10.1063/1.532812 |
[33] | 刘青平, Manas M. BKP方程族的 Pfaffian解. 数学年刊, 2002, 23A(6): 693-698 |
Liu Q P, Manas M. On the Pfaffian solutions of the BKP hierarchy. Chin Ann Math, 2002, 23A(6): 693-698 | |
[34] |
Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61: 950-959
doi: 10.1016/j.camwa.2010.12.043 |
[35] |
Ma W X, Pekcan A. Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations. Z Naturforsch A, 2001, 66: 377-382
doi: 10.1515/zna-2011-6-701 |
[36] |
Wazwaz A M. Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Commun Nonlin Sci Numer Simul, 2012, 17: 491-495
doi: 10.1016/j.cnsns.2011.05.025 |
[37] |
Ma W X, Xia T C. Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation. Phys Scr, 2013, 87: 055003
doi: 10.1088/0031-8949/87/05/055003 |
[38] |
Wu J P, Geng X G. Novel Wronskian condition and new exact solutions to a (3+1)-dimensional generalized KP equation. Commun Theor Phys, 2013, 60: 556-560
doi: 10.1088/0253-6102/60/5/08 |
[39] |
Wazwaz A M, El-Tantawy S A. A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation. Nonlinear Dyn, 2016, 84: 1107-1112
doi: 10.1007/s11071-015-2555-6 |
[40] |
You F C, Xia T C, Chen D Y. Decomposition of the generalized KP, cKP and mKP and their exact solutions. Phys Lett A, 2008, 372: 3184-3194
doi: 10.1016/j.physleta.2008.01.036 |
[1] | Hao Zhang,Na Wang. A Class of Weakly Nonlinear Critical Singularly Perturbed Integral Boundary Problems [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1060-1073. |
[2] | Shengxin Hua,Guolin Yu,Wenyan Han,Xiangyu Kong. Characterization of Optimality to Constrained Vector Equilibrium Problems via Approximate Subdifferential [J]. Acta mathematica scientia,Series A, 2022, 42(2): 365-378. |
[3] | Meng Li,Guolin Yu. Optimality of Robust Approximation Solutions for Uncertain Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1007-1017. |
[4] | LONG Xian-Jun. Optimality Conditions for Approximate Solutions on Nonconvex Vector Equilibrium Problems in Asplund Spaces [J]. Acta mathematica scientia,Series A, 2014, 34(3): 593-602. |
[5] | Meng Chunjun; Hu Xiyan. The Inverse Eigenvalue Problem of Hamiltonian Matrices [J]. Acta mathematica scientia,Series A, 2007, 27(3): 442-448. |
[6] | Yan Yubin, Li Chunli. The Expression of the Solution of the First Kind Ⅲ-Posed Operator Equation [J]. Acta mathematica scientia,Series A, 1998, 18(3): 264-269. |
[7] | Wang Xiaolin. Indirect Approximate Solution With Complex Splines for Singular Integral Equations on A Closed Contour [J]. Acta mathematica scientia,Series A, 1997, 17(3): 348-355. |
|