Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (1): 159-168.
Previous Articles Next Articles
Tong Yuxia,Guo Yanmin,Gu Jiantao*()
Received:
2020-11-17
Revised:
2022-03-04
Online:
2023-02-26
Published:
2023-03-07
Supported by:
CLC Number:
Tong Yuxia, Guo Yanmin, Gu Jiantao. Global BMO Estimation for the Gradient of Weak Solutions to a Class of Elliptic Obstacle Problems[J].Acta mathematica scientia,Series A, 2023, 43(1): 159-168.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Cianchi A, Maz'ya V. Global Lipschitz regularity for a class of quasilinear elliptic equations. Communications in Partial Differential Equations, 2011, 36(1): 100-133
doi: 10.1080/03605301003657843 |
[2] |
Cianchi A, Maz'ya V. Global boundedness of the gradient for a class of nonlinear elliptic systems. Archive for Rational Mechanics and Analysis, 2014, 212(1): 129-177
doi: 10.1007/s00205-013-0705-x |
[3] |
Yao F P, Zhang C, Zhou S L. Global regularity estimates for a class of quasilinear elliptic equations in the whole space. Nonlinear Analysis, 2020, 194: 111307
doi: 10.1016/j.na.2018.07.004 |
[4] |
Yao F P, Zhou S L. Calderón-Zygmund estimates for a class of quasilinear elliptic equations. Journal of Functional Analysis, 2017, 272(4): 1524-1552
doi: 10.1016/j.jfa.2016.11.008 |
[5] |
Yao F P. Global Calderón-Zygmund estimates for a class of nonlinear elliptic equations with Neumann data. Journal of Mathematical Analysis and Applications, 2018, 457: 551-567
doi: 10.1016/j.jmaa.2017.08.030 |
[6] |
DiBenedetto E, Manfredi J. On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. American Journal of Mathematics, 1993, 115(5): 1107-1134
doi: 10.2307/2375066 |
[7] | Diening L, Kaplický P, Schwarzacher S. BMO estimates for the $p$-Laplacian. Nonlinear Analysis: Theory Methods and Applications, 2012, 75(2): 637-650 |
[8] | Liang S, Zheng S Z. Gradient estimate in Orlicz spaces for elliptic obstacle problems with partially BMO nonlinearities. Electronic Journal of Differential Equations, 2018, 2018(58): 1-15 |
[9] |
Acquistapace P. On BMO regularity for linear elliptic systems. Annali di Matematica Pura ed Applicata, 1992, 161: 231-269
doi: 10.1007/BF01759640 |
[10] | Danĕček J. The interior BMO-regularity for a weak solution of nonlinear second order elliptic systems. Nonlinear Differential Equations Applications, 2002, 9(4): 385-396 |
[11] |
Yu H Y, Zheng S Z. BMO estimate to $A$-harmonic systems with discontinuous coefficients. Nonlinear Analysis: Real World Applications, 2015, 26: 64-74
doi: 10.1016/j.nonrwa.2015.05.003 |
[12] | 张俊杰, 郑神州, 于海燕. 具有部分BMO系数的非散度型抛物方程的Lorentz估计. 数学物理学报, 2019, 39A(6): 1405-1420 |
Zhang J J, Zheng S Z, Yu H Y. Lorentz estimates for nondivergent parabolic equations with partial BMO coefficients. Acta Mathematica Scientia, 2019, 39A(6): 1405-1420 | |
[13] | 王支伟. 具有BMO系数的椭圆型方程在对数空间的正则性. 杭州: 浙江大学, 2012 |
Wang Z W. Regularity of Elliptic Equations with BMO Coefficients in Logarithmic Space. Hangzhou: Zhejiang University, 2012 | |
[14] | 佟玉霞, 王薪茹, 谷建涛. Orlicz空间中$A$ -调和方程很弱解的$L^{\Phi}$估计. 数学物理学报, 2020, 40A(6): 1461-1480 |
Tong Y X, Wang X R, Gu J T. $L^{\Phi}$-type estimates for very weak solutions of $A$-harmonic equation in Orlicz spaces. Acta Mathematica Scientia, 2020, 40A(6): 1461-1480 | |
[15] | 张雅楠, 闫硕, 佟玉霞. 自然增长条件下的非齐次$A$ -调和方程弱解的梯度估计. 数学物理学报, 2020, 40A(2): 379-394 |
Zhang Y N, Yan S, Tong Y X. Gradient estimates for weak solutions to non-homogeneous $A$-harmonic equations under natural growth. Acta Mathematica Scientia, 2020, 40A(2): 379-394 | |
[16] | Adams R A, Fournier J J F. Sobolev Spaces. New York: Academic Press, 2003 |
[17] | Diening L, Ettwein F. Fractional estimates for non-differentiable elliptic systems with general growth. Forum Mathematicum, 2008, 20(3): 523-556 |
[18] |
Lieberman G M. The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Communications in Partial Differential Equations, 1991, 16(2): 311-361
doi: 10.1080/03605309108820761 |
[1] | Yaqi Wan,Xiaoli Chen. Regularity Criterion for 3D Incompressible Navier-Stokes Equations via the Pressure in Triebel-Lizorkin Spaces [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1473-1481. |
[2] | Kexin Luo,Shaoyong Lai. Global Weak Solutions to a High-Order Camass-Holm Type Equation [J]. Acta mathematica scientia,Series A, 2022, 42(2): 427-441. |
[3] | Tong Tang,Cong Niu. Global Existence of Weak Solutions to the Quantum Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2022, 42(2): 387-400. |
[4] | Daoguo Zhou. Regularity Criteria in Lorentz Spaces for the Three Dimensional Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1396-1404. |
[5] | Weilin Zou,Yuanchun Ren,Meipin Xiao. Regularizing Effect of L1 Interplay Between Coefficients in Nonlinear Degenerate Elliptic Equations [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1405-1414. |
[6] | Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2021, 41(1): 149-165. |
[7] | Yuxia Tong,Xinru Wang,Jiantao Gu. Lϕ-Type Estimates for Very Weak Solutions of A-Harmonic Equation in Orlicz Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1461-1480. |
[8] | Jiao Luo,Qian Qi,Hong Luo. Weak Solutions to Higher-Order Anisotropic Cahn-Hilliard-Navier-Stokes Systems [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1599-1611. |
[9] | Yanan Zhang,Shuo Yan,Yuxia Tong. Gradient Estimates for Weak Solutions to Non-Homogeneous A-Harmonic Equations Under Natural Growth [J]. Acta mathematica scientia,Series A, 2020, 40(2): 379-394. |
[10] | Limin Zhang,Haiyan Xu,Chunhua Jin. Global Existence and Stability to a Prey-Taxis Model with Porous Medium Diffusion and Indirect Signal Production [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1381-1404. |
[11] | Kai Li,Han Yang,Fan Wang. Study on Weak Solution and Strong Solution of Incompressible MHD Equations with Damping in Three-Dimensional Systems [J]. Acta mathematica scientia,Series A, 2019, 39(3): 518-528. |
[12] | Zhang Shengui. Infinitely Many Solutions for a Bi-Nonlocal Problem Involving p(x)-Laplacian-Like Operator [J]. Acta mathematica scientia,Series A, 2018, 38(3): 514-526. |
[13] | Xing Chao, Ren Mengzhang, Luo Hong. The Existence of Global Weak Solutions to Thermohaline Circulation Equations [J]. Acta mathematica scientia,Series A, 2018, 38(2): 284-290. |
[14] | Gao Hongya, Jia Miaomiao. Local Regularity and Local Boundedness for Solutions to Obstacle Problems [J]. Acta mathematica scientia,Series A, 2017, 37(4): 706-713. |
[15] | Du Guangwei, Niu Pengcheng. Higher Integrability for Very Weak Solutions of Obstacle Problems to Nonlinear Subelliptic Equations [J]. Acta mathematica scientia,Series A, 2017, 37(1): 122-145. |
|