1 |
Abresch U , Rosenberg H . A Hopf differential for constant mean curvature surfaces in ${\Bbb S}.{2}\times{\Bbb R}$ and ${\Bbb H}.{2}\times{\Bbb R}$. Acta Math, 2004, 193: 141- 174
|
2 |
Alschuler S J , Wu L F . Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc Var Partial Differential Equations, 1994, 2: 101- 111
|
3 |
Gao Y, Gong Y J, Mao J. Translating solutions of the nonparametric mean curvature flow with nonzero Neumann boundary data in product manifold ${\Bbb M}.{n}\times{\Bbb R}$. 2020, arXiv: 2001.09860
|
4 |
Ma X N , Wang P H , Wei W . Constant mean curvature surfaces and mean curvature flow with nonzero Neumann boundary conditions on strictly convex domains. J Funct Anal, 2018, 274: 252- 277
|
5 |
Ma X N , Xu J J . Gradient estimates of mean curvature equations with Neumann boundary condition. Adv Math, 2016, 290: 1010- 1039
|
6 |
Mazet L , Rodríguez M M , Rosenberg H . Periodic constant mean curvature surfaces in ${\Bbb H}.{2}\times{\Bbb R}$. Asian J Math, 2014, 18: 829- 858
|
7 |
Meeks W H , Rosenberg H . Stable minimal surfaces in $M\times{\Bbb R}$. J Differential Geom, 2004, 68: 515- 534
|
8 |
Rosenberg H , Schulze F , Spruck J . The half-space property and entire positive minimal graphs in $M\times{\Bbb R}$. J Differential Geom, 2013, 95: 321- 336
|
9 |
Wang J , Wei W , Xu J J . Translating solutions of non-parametric mean curvature flows with capillary-type boundary value problems. Commun Pure Appl Anal, 2019, 18 (6): 3243- 3265
|