Acta mathematica scientia,Series A ›› 2020, Vol. 40 ›› Issue (6): 1537-1551.
Previous Articles Next Articles
Dexiang Ma1,*(),Abdullah Özbekler2()
Received:
2019-06-14
Online:
2020-12-26
Published:
2020-12-29
Contact:
Dexiang Ma
E-mail:mdxcxg@163.com;aozbekler@gmail.com
CLC Number:
Dexiang Ma,Abdullah Özbekler. Generalized Lyapunov Inequalities for a Higher-Order Sequential Fractional Differential Equation with Half-Linear Terms[J].Acta mathematica scientia,Series A, 2020, 40(6): 1537-1551.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Liapunov A M . Probleme général de la stabilité du mouvement (French Translation of a Russian paper dated 1893). Ann Fac Sci Univ Toulouse, 1907, 2: 27- 247 |
2 | Wintner A . On the non-existence of conjugate points. Amer J Math, 1951, 73: 368- 380 |
3 | Hartman P . Ordinary Differential Equations. New York: Wiley, 1964 |
4 | Yang X , Kim Y , Lo K . Lyapunov-type inequalities for a class of higher-order linear differential equations. Appl Math Lett, 2014, 34: 86- 89 |
5 | Yang X . On Liapunov-type inequality for certain higher-order differential equations. Appl Math Comput, 2003, 134: 307- 317 |
6 | Zhang Q, He X. Lyapunov-type inequalities for a class of even order differential equations. J Inequal Appl, 2012, Article number: 5. DOI: 10.1186/1029-242X-2012-5 |
7 | Watanabe K , Yamagishi H , Kametaka Y . Riemann zeta function and Lyapunov-type inequalities for certain higher order differential equations. Appl Math Comput, 2011, 218: 3950- 3953 |
8 | Çakmak D . Lyapunov-type integral inequalities for certain higher order differential equations. Appl Math Comput, 2010, 216: 368- 373 |
9 | Dhar S , Kong Q . Lyapunov-type inequalities for higher order half-linear differential equations. Appl Math Comput, 2016, 273: 114- 124 |
10 | Yang X , Kim Y , Lo K . Lyapunov-type inequality for a class of even-order linear differential equations. Appl Math Comput, 2014, 245: 145- 151 |
11 | Aktaş M F , Çakmak D , Tiryaki A . On the Lyapunov-type inequalities of a three-point boundary value problem for third order linear differential equations. Appl Math Lett, 2015, 45: 1- 6 |
12 | Parhi N , Panigrahi S . On Liapunov-type inequality for third-order differential equations. J Math Anal Appl, 1999, 233: 445- 460 |
13 | Agarwal R P, Özbekler A. Lyapunov type inequalities for even order differential equations with mixed nonlinearities. J Inequal Appl, 2015, Article number: 142. DOI: 10.1186/s13660-015-0633-4 |
14 | Agarwal R P , Özbekler A . Disconjugacy via Lyapunov and Vallée-Poussin type inequalities for forced differential equations. Appl Math Comput, 2015, 265: 456- 468 |
15 | Yang X . Lyapunov type inequalities for second-order half-linear differential equations. J Math Anal Appl, 2011, 382: 792- 801 |
16 | Yang X . On inequalities of Lyapunov type. Appl Math Comput, 2003, 134: 293- 300 |
17 | Lee C , Yeh C , Hong C , Agarwal R P . Lyapunov and Wirtinger inequalities. Appl Math Lett, 2004, 17: 847- 853 |
18 | Tiryaki A , Çakmak D , AktaşM F . Lyapunov-type inequalities for a certain class of nonlinear systems. Comput Math Appl, 2012, 64: 1804- 1811 |
19 | Agarwal R P , Özbekler A . Lyapunov type inequalities for second order sub and super half-linear differential equations. Dyn Syst Appl, 2015, 24: 211- 220 |
20 | Yang X , Lo K . Lyapunov-type inequality for a class of even-order differential equations. Appl Math Comput, 2010, 215: 3884- 3890 |
21 | Yang X , Kim Y , Lo K . Lyapunov-type inequality for a class of odd-order differential equations. J Comput Appl Math, 2010, 234: 2962- 2968 |
22 | Panigrahi S . Lyapunov-type integral inequalities for certain higher-order differential equations. Electron J Differ Equa, 2009, 28: 1- 14 |
23 | Dhar S , Kong Q . Lyapunov-type inequalities for third-order half-linear equations and applications to boundary value problems. Nonlinear Anal, 2014, 110: 170- 181 |
24 | Ferreira R A C . A Lyapunov-type inequality for a fractional boundary value problem. Fract Calc Appl Anal, 2013, 16: 978- 984 |
25 | Ferreira R A C . On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function. J Math Anal Appl, 2014, 412: 1058- 1063 |
26 | Jleli M , Samet B . Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math Inequal Appl, 2015, 18: 443- 451 |
27 | Rong J , Bai C . Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions. Adv Differ Equa, 2015, 82: 1- 10 |
28 |
Cabrera I , Sadarangani K , Samet B . Hartman-Wintner-type inequalities for a class of nonlocal fractional boundary value problems. Math Meth Appl Sci, 2016,
doi: 10.1002/mma.3972 |
29 | Ma D. A generalized Lyapunov inequality for a higher-order fractional boundary value problem. J Inequal Appl, 2016, Article number: 261. DOI: 10.1186/s13660-016-1199-5 |
30 | O'Regan D, Samet B. Lyapunov-type inequalities for a class of fractional differential equations. J Inequal Appl, 2015, Article number: 247. DOI: 10.1186/s13660-015-0769-2 |
31 | Agarwal R P , Özbekler A . Lyapunov-type inequalities for mixed nonlinear Riemann-Liouville fractional differential equations with a forcing term. J Comput Appl Math, 2017, 314: 69- 78 |
32 | Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006 |
33 | Ferreira R A C. Existence and uniqueness of solutions for two-point fractional boundary value problems. Electron J Differential Equations, 2016, Article number: 202 |
|