Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (1): 71-82.
Previous Articles Next Articles
Zhang Mingshu1, Zhu Zheqi2, Zhao Caidi1
Received:
2016-12-14
Revised:
2017-04-10
Online:
2018-02-26
Published:
2018-02-26
Supported by:
CLC Number:
Zhang Mingshu, Zhu Zheqi, Zhao Caidi. Determining Modes and Determining Nodes to the Fluid Flow of Ladyzhenskaya Model[J].Acta mathematica scientia,Series A, 2018, 38(1): 71-82.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Adams R A. Sobolev Spaces. New York:Academic Press, 1975 [2] Bae H. Existence regularity and decay rate of solutions of non-Newtonian flow. J Math Anal Appl, 1999, 231:467-491 [3] Bae H, Choe H. Existence and regularity of solutions of non-Newtonian flow. Quart Appl Math, 2000, 58:101-110 [4] Bloom F, Hao W. Regularization of a non-Newtonian system in an unbounded channel:Existence and uniqueness of solutions. Nonlinear Anal, 2001, 44:281-309 [5] Bellout H, Bloom F, Nečas J. Young measure value solutions for non-Newtonian incompressible fluids. Comm Partial Differential Equations, 1994, 19:1768-1803 [6] Bohme G. Non-Newtonian Fluid Mechanics. Amsterdam:North-Holland, 1987 [7] Boyer F, Fabrie P. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. New York:Springer, 2013 [8] Cao C, Rammaha M A, Titi E S. The Navier-Stokes equations on the rotating 2-D sphere:Gevrey regularity and asymptotic degrees of freedom. Z Angew Math Phys, 1999, 50:341-360 [9] Cockburn B, Jones D A, Titi E S. Eestimating the number of asymptotic degrees of freedom for nonlinear dissipative systems. Math Comp, 1997, 219:1073-1087 [10] Constantin P, Foias C, Manley O, Temam R. Determining modes and fractal dimension of turbulent flows. J Fluid Mech, 1985, 150:427-440 [11] Constantin P, Foias C, Manley O, Temam R. On the dimension of the attractor in two-dimensional turbulence. Phys D, 1988, 30:427-40 [12] Catania D. Global attractor and determining modes for a hyperbolic MHD turbulence model. J Turbulence, 2011, 40:1-20 [13] Dong B, Li Y. Large time be havior to system of incompressible. J Math Anal Appl, 2004, 209:667-676 [14] Foias C, Temam R. Determination of the solutions of the Navier-Stokes equations by a set of nodal values. Math Comp, 1984, 43:117-133 [15] Foias C, Manley O, Rosa R, Temam R. Navier-Stokes Equations and Turbulence. Cambridge:Cambridge University Press, 2004 [16] Foias C, Jolly M, Kravchenko R, Titi E S. A determining form for the two-dimensional Navier-Stokes equations:The Fourier modes case. J Math Phys, 2012, 53:1-30 [17] Flandolf F, Langa J A, Determining modes for dissipative random dynamical systems. Stochastics:An Inter J Prob Stoch Processes, 1999, 66:1-25 [18] Foias C, Manley O, Temam R, Tréve Y M. Asymptotic analysis of the of the Navier-Stokes equations. Phys D, 1983, 9:157-188 [19] Foias C, Kukavica I. Determining nodes for the Kuramoto-Sivashinsky equation. Dynamics Differential Equations, 1995, 7:365-373 [20] Galdi G P. Determining modes, nodes and volume elements for stationary solutions of the Navier-Stokes problem past a three-dimensional body. Arch Rational Mech Anal, 2006, 180:97-126 [21] Hale J K, Raugel G. Regularity, determining modes and Galerkin methods. J Math Pures Appl, 2003, 82:1075-1136 [22] Hoff D, Ziane M. The global attractor and finite determining nodes for the Navier-Stokes equations of compressible flow with singular initial data. Indiana University Math J, 200349:843-890 [23] Jones D A, Titi E S. On the number of determining nodes for the 2D Navier-Stokes equations. J Math Anal Appl, 1992, 168:72-88 [24] Jones D A, Titi E S. Determining finite volume elements for the 2D Navier-Stokes equations. Physica D, 1992, 60:165-174 [25] Jones D A, Titi E S. Upper bounds on the number of determining modes, and volum elements for the Navier-Stokes equations. Indiana Univ Math J, 1993, 42:875-887 [26] Jollya M S, Sadigov T, Titi E S. A determining form for the damped driven nonlinear Schrödinger equation-Fourier modes case. J Differential Equations, 2015, 258:2711-2744 [27] Ju N. Estimates of asymptotic degrees of freedom for solutions to the Navier-Stokes equations. Nonlinearity, 2000, 13:777-789 [28] Kalantarov V K, Titi E S. Global attractors and determining modes for the 3D Navier-Stokes-Voight equations. Chinese Annals Math-B, 2009, 30:697-714 [29] 郭柏灵, 林国广, 尚亚东. 非牛顿流动力系统. 北京:国防工业出版社, 2006Guo B L, Lin G G, Shang Y D. Non-Newtonian Fluid Dynamic System. Beijing:National Defence Industry Press, 2006 [30] Ladyzhenskaya O. The Mathematical Theory of Viscous Incompressible Fluids. New York:Gordon and Breach, 1969 [31] Ladyzhenskaya O. New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problem for them. Trudy Steklov's Math Inst, 1967, 102:85-104 [32] Nečasová Š, Penel P. L2 decay for weak solution to equation of non-Newtonian incompressible fluids in the whole space. Nonlinear Anal, 2001, 47:4181-4191 [33] Olson E, Titi E S. Determining modes for continuous data assimilation in 2D turbulence. J Stat Phys, 2003, 113:799-840 [34] Olson E, Titi E S. Determining modes and Grashof number in 2D turbulence:a numerical case study. Theoretical Comp Fluid Dyna, 2008, 22:327-339 [35] Paicu M, Raugel G, Rekalo A. Regularity and finite-dimensional behaviour of the global attractor of the second grade fluids equations. J Differential Equations, 2012, 252:3695-3751 [36] Pokorný M. Cauchy problem for non-Newtonian incompressible fluids. Appl Math, 1996, 41:169-201 [37] Szopa P. Determining modes for 2-D micropolar fluid flows. Math Comp Modelling, 2005, 42:1079-1088 [38] Zhao C, Zhou S. Pullback attractors for nonautonomous incompressible non-Newtonian fuild. J Differential Equations, 2007, 238:394-425 [39] Zhao C, Li Y, Zhou S. Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fuild. J Differential Equations, 2009, 247:2331-2363 [40] Zhao C, Jia X, Yang X. Uniform attractor non-autonomous incompressible non-Newtonian fluid with a new class of external forces. Acta Math Sci, 2011, 31:1803-1812 |
|