Acta mathematica scientia,Series A ›› 2018, Vol. 38 ›› Issue (1): 83-95.
Previous Articles Next Articles
Chen Pengfei
Received:
2016-10-28
Revised:
2017-01-16
Online:
2018-02-26
Published:
2018-02-26
Supported by:
CLC Number:
Chen Pengfei. The Inviscid and Non-Resistive Limit for 3D Nonhomogeneous Incompressible MHD Equations with a Slip Boundary Condition[J].Acta mathematica scientia,Series A, 2018, 38(1): 83-95.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Antontsev S N, Kazhikhov A V, Monakhov V N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Amsterdam:North-Holland, 1990 [2] Berselli L C, Spirito S. On the vanishing viscosity limit of 3D navier stokes equations under slip boundary conditions in general domains. Comm Math Phys, 2012, 316:171-198 [3] Berselli L C, Spirito S. An elementary approach to the inviscid limits for the 3D Navier-Stokes equations with slip boundary conditions and applications to the 3D Boussinesq equations. Nonlinear Differential Equations Appl, 2014, 21:149-166 [4] Beirão da Veiga H, Valli A. On the Euler equations for nonhomogeneous fluids. Rend Semin Mat Univ Padova, 1980, 63:151-168 [5] Beirão da Veiga H, Valli A. On the Euler equations for nonhomogeneous fluids. Ⅱ. J Math Anal Appl, 1980, 73:338-350 [6] Beirão da Veiga H, Crispo F. Concerning the Wk,p-inviscid limit for 3D flows under a slip boundary condition. J Math Fluid Mech, 2011, 13:117-135 [7] Bittencourt J A. Fundamentals of Plasma Physics. Oxford:Pergamon Press, 1986 [8] Cho Y, Kim H. Unique solvability for the density dependent Navier Stokes equations. Nonlinear Anal, 2004, 59:465-480 [9] Danchin R. The inviscid limit for density dependent incompressible fluids. Ann Fac Sci Toulouse Math, 2006, 15:637-688 [10] Diaz J, Lerena M. On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics. Math Models Methods Appl Sci, 2003, 12:1401-1419 [11] Freidberg J. Ideal Magnetohydrodynamics. New York:London Plenum Press, 1987 [12] Guo B L, Wang G W. Vanishing viscosity limit for the 3D magnetohydrodynamic system with generalized Navier slip boundary condition. Math Methods in App Sci, 2016, 39:4526-4534 [13] Gurnett D A, Bhattacharjee A. Introduction to Plasma Physics. Cambridge:Cambridge University Press, 2005 [14] Ferreira L C F, Planas G, Villamizar-Roa E J. On the nonhomogeneous Navier-Stokes system with Navier friction boundary conditions. SIAM J Math Anal, 2013, 45:2576-2595 [15] Iftimie D, Planas G. Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity, 2006, 19:899-918 [16] Iftimie D, Sueur F. Viscous boundary layers for the navier-stokes equations with the navier slip conditions. Arch Ration Mech Anal, 2011, 199:145-175 [17] Itoh S. On the vanishing viscosity in the cauchy problem for the equations of a nonhomogeneous incompressible fluid. Glasgow Math J, 1994, 36:123-129 [18] Itoh S, Tani A. Solvability of nonstationary problems for nonhomogeneous incompressible fluids and convergence with vanishing viscosity. Tokyo J Mat, 1999, 22:17-42 [19] Kulikovskiy A, Lyubimov G. Magnetohydrodynamics. Reading MA:Addison-Wasley, 1965 [20] Kitkin P A. On the dynamics of sea and ocean flows. Doklady Akad Nauk SSSR (NS), 1953, 92:293-296 [21] Ladyzhenskaya O, Solonnikov V A. Unique solvability of an initial and boundary-value problem for viscous incompressible nonhomogeneous fluids. J Math Sci, 1978, 9:697-749 [22] Masmoudi N, Rousset F. Uniform Regularity for the Navier-Stokes equation with Navier boundary condition. Arch Ration Mech Anal, 2012, 203:529-575 [23] Navier C L M. Mémoire sur les lois du mouvement des fluides. Mém R Sciences Inst France, 1823, 6:389-440 [24] Valli A, Zajaczkowski W. About the motion of nonhomogeneous ideal incompressible fluids. Nonlinear Anal, 1988, 12:43-50 [25] Wu J H. Generalized MHD equations. J Differential Equations, 2003, 195:284-312 [26] Xiao Y L, Xin Z P. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60:1027-1055 [27] Xiao Y L, Xin Z P, Wu J H. Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition. J Funct Anal, 2009, 257:3375-3394 [28] Xiao Y L, Xin Z P. Remarks on vanishing viscosity limits for 3D Navier-Stokes equations with a slip boundary condition. Chin Ann Math B, 2011, 32:321-332 [29] Xiao Y L, Xin Z P. On 3D Lagrangian Navier-Stokes α model with a class of vorticity slip boundary conditions. J Math Fluid Mech, 2013, 15:215-247 [30] Xiao Y L, Xin Z P. On the inviscid limit of the 3D Navier-Stokes equations with generalized Navier-slip boundary conditions. Commun Math Stat, 2013, 1:259-279 [31] Zhang J W. The inviscid and non-resistive limit in the cauchy problem for 3D nonhomogeneous incompressible magnetohydrodynamics. Acta Math Sci, 2011, 31:882-896 |
[1] | Xie Chaodong, Chen Zhihui. On the Existence of Positive Solutions for Generalized Quasilinear Schrödinger Equations [J]. Acta mathematica scientia,Series A, 2018, 38(4): 687-696. |
[2] | Yu Chun, Wan Youyan. The Existence of Ground State to the Generalized Choquard-Pekar Equation with Superlinear Nonlinearities [J]. Acta mathematica scientia,Series A, 2018, 38(2): 276-283. |
[3] | Sun Xiaomei. The Existence of Solutions for Choquard Type Equation [J]. Acta mathematica scientia,Series A, 2018, 38(1): 54-60. |
[4] | Kang Dongsheng, Xiong Ping. Biharmonic Systems Involving Critical Nonlinearities and Different Rellich-Type Potentials [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1105-1118. |
[5] | Liao Jiafeng, Li Hongying. Existence and Multiplicity of Positive Solutions for the Superlinear Kirchhoff-Type Equations with Critical Sobolev Exponent [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1119-1124. |
[6] | Guo Helin, Wang Yunbo. A Remark on a Constrained Variational Problem [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1125-1128. |
[7] | Zhao Leina. Homogenization of Degenerate Quasilinear Elliptic Equations [J]. Acta mathematica scientia,Series A, 2017, 37(5): 860-868. |
[8] | Lu Pingping, Hu Lianggen. A Note to Monotonicity Formula for Stable Solutions of the Weighted Elliptic System [J]. Acta mathematica scientia,Series A, 2017, 37(4): 698-705. |
[9] | Li Jinju, Zhang Zhengjie. The Existence of Two Non-Negative Solutions for the Generalized Choquard-Pekar Equation [J]. Acta mathematica scientia,Series A, 2017, 37(3): 491-498. |
[10] | Ba Na, Tian Fanji, Zheng Lie. C2+α Local Solvability of the k-Hessian Equations [J]. Acta mathematica scientia,Series A, 2017, 37(3): 499-509. |
[11] | Gu Longjiang, Sun Zhiyu, Zeng Xiaoyu. The Existence of Minimizers for a Class of Constrained Variational Problem with Its Concentration Behavior [J]. Acta mathematica scientia,Series A, 2017, 37(3): 510-518. |
[12] | Huang Decheng, Chen Shouxin. New Proof for the Existence of Minimizing Energy Solutions for the Ginzburg-Landau Equations [J]. Acta mathematica scientia,Series A, 2017, 37(2): 299-306. |
[13] | Yang Fan, Fu Chuli, Li Xiaoxiao, Ren Yupeng. Fourier Truncation Regularization for a Class of Nonlinear Backward Heat Equation [J]. Acta mathematica scientia,Series A, 2017, 37(1): 62-71. |
[14] | Yuan Haihua, Zhang Zhengjie, Xu Guojin. Multiple Solutions for Semilinear Elliptic Equations with Critical Exponents and Hardy Potential [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1137-1144. |
[15] | Chen Shaowei, Xiao Liqin. Existence of Nontrivial Solution of a Periodic Thomas-Fermi-Dirac-von Weizsäcker Equation with a Large Parameter [J]. Acta mathematica scientia,Series A, 2016, 36(5): 965-977. |
|