数学物理学报 ›› 2009, Vol. 29 ›› Issue (4): 1033-1043.

• 论文 • 上一篇    下一篇

Heisenberg群上无穷远处的集中列紧原理和具有Sobolev临界指数的p - 次Laplace方程多解的存在性

  

  1. (1.西安财经学院 统计学院, 西安 710061, 2.西北工业大学 应用数学系, 西安 710072)
  • 收稿日期:2008-04-18 修回日期:2009-05-27 出版日期:2009-08-25 发布日期:2009-08-25
  • 基金资助:

    陕西省自然科学基础研究计划(2006A09)和西北工业大学科技创新基金(2008kJ02033)资助

A Concentration-Compactness Principle at Infinity on the Heisenberg Group and Multiplicity of Solutions for p-sub-Laplacian Problem Involving Critical Sobolev Exponents

  1. (1.School of Statistics, Xi'an Institute of Finance and Economics, Xi'an 710061, 2.Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072)
  • Received:2008-04-18 Revised:2009-05-27 Online:2009-08-25 Published:2009-08-25
  • Supported by:

    陕西省自然科学基础研究计划(2006A09)和西北工业大学科技创新基金(2008kJ02033)资助

摘要:

通过建立Heisenberg群上无穷远处的集中列紧原理, 研究了如下$p$ -次Laplace方程

 -ΔH, pu=λg(ξ)|u|q-2u+f (ξ)|u|p*-2u, 在Hn上,

 u ∈ D1, p(Hn),

其中ξ ∈ Hn, λ ∈ R, 1<p<Q=2n+2, n ≥ 1, 1<qp*=Qp / Q-p, g(ξ), f(ξ) 是可以变号和满足一定条件的函数. 在适当条件下利用集中列紧原理证明在某个水平处的Palais-Smale条件,  从而结合变分原理得到方程存在m-j 对解, 其中m>j, 且m, 为整数.

关键词: Heisenberg 群, p -次Laplace算子, 集中列紧原理, Palais-Smale条件, 多解

Abstract:

The main results of this paper establish the concentration-compactness principle at infinity on the Heisenberg group. The authors consider
the p-sub-Laplacian problem involving critical Sobolev exponents 

 -ΔH, pu=λg(ξ)|u|q-2u+f (ξ)|u|p*-2u,  in Hn,

 u ∈ D1, p(Hn),

 where ξ ∈ Hn, λ ∈ R,1<p<Q=2n+2, n ≥ 1, 1<q<pp*=Qp/Q-pg(ξ) and f(ξ) change sign and satisfy some suitable conditions. Under certain assumptions, they show the existence of m-j pairs of nontrivial solutions via variational  method,  where m>j, both m and j are   integers. The concentration-compactness principle allows  to prove the Palais-Smale condition is satisfied below a certain level.

Key words: Heisenberg group, p-sub-Laplacian, Concentration-compactness principle,  Palais-Smale condition, Multiplicity

中图分类号: 

  • 35D05