[1] Lions P L. The concentration-compactness principle in the calculus of variations; the limit case, Part 1,2. Revista Mat Ibaroamericana, 1985, 1(2/3): 145--201, 45--121
[2] Lions P L. The concentration-compactness principle in the calculus of variations, locaily compact case, Part 1,2. Ann Inst H Poincar'e, 1984, 1(1/4): 109--145, 223--283
[3] Bianchi G, Chabrowski J, Szulkin A. On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev
exponent. Nonlinear Analysis, 1995, 25: 41--59
[4] Ben-Naoum A K, Troestler C, Willem M. Extrema problems with critical Sobolev exponents on unbounded domains. Nonlinear Analysis, 1996, 26: 823--833
[5] Chabrowski J. Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev
exponents. Calc Var Partial Differential Equations, 1995, 3: 493--512
[6] Huang D, Li Y. A concentration-compactness principle at infinity and positive solutions of some quasilinear elliptic equations in
unbounded domains. J Math Anal Appl, 2005, 304: 58--73
[7] Folland G B, Stein E M. Estimaties for the $\bar{\partial}_b$-complex and analysis on the Heisenberg group. Comm Pure Appl Math, 1974, 27: 429--522
[8] Niu P, Zhang H, Wang Y. Hardy type and Rellich type inequalities on the Heisenberg group. Proc Amer Math Soc, 2001, 129(12): 3623--3630
[9] Garofalo N, Lanconelli E. Existence and nonexistence results for semilinear equations on the Heisenberg group. Indiana Uni Math J, 1992, 41(1): 71--98
[10] Wang W. Positive solution of a subelliptic nonlinear equation on the heisenberg group. Canadian Math Bulletin, 2001, 43(3): 346--354
[11] Garofalo N, Vassilev D. Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups. Math Ann, 2000, 318: 453--516
[12] Huang Y S. On multiple solutions of quasilinear equations involving the critical sobolev exponent. J Math Anal Appl, 1999, 231: 142--160
[13] Yang J. Positive solutions of quasilinear elliptic obstacle problems with critical exponents. Nonlinear Analysis, 1995, 25: 1283--1306
[14] Dr'abek P, Huang Y X. Multiplicity of positive solutions for some quasilinear elliptic equation in ${\Bbb R}^N$ with critical Sobolev exponent. J Diff Eqs, 1997, 140: 106--132
[15] Garofalo N, Nhieu D M. Isoperimetric and Sobolev inequalities for Carnot-Carth'eodory spaces and the existence of minimal surfaces. Comm Pure Appl Math, 1996, 49: 1081--1144
[16] Clark D C. A variant of Ljusternik-Schnirelman theory. Indiana Univ Math J, 1972, 22: 65--74
[17] Struwe M. Variational Methods and Their Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Second Edition.
Berlin: Springer-Verlag, 2000
|