[1]Gilbarg D, Trudinger NS. Elliptic Partical Differential Equations of Second Order.New York: Springer Verlag,1983
[2]Kusano T, Natio N. Oscillation theory of entire solutions of second order supperlinear elliptic equations.Funkcial Ekvac,1987 30: 269-282
[3]Yoshida N. Oscillation properties of solution of second order elliptic equation. SIAM J Math Anal, 1983, 14(4): 709-717
[4]Noussair E S, Swanson C A. Oscillation of semilinear elliptic inequaliti es by Riccati transformation.Canad J Math,1980,32(4): 908-923
[5]Swanson C A. Criteria for oscillation sublinear Schrodinger equations.Pacific J Math, 1983, 104(2): 483-493
[6]Xu Z T.Oscillation of second order elliptic partial differential equatio ns with a "weakly integrally small" coefficient.J Sys&Math Scis,1989,18(4): 478-484 (In Chinese)
[7]Xu Z T.Asymptotic behavior of solutions of second order nonlinear ellip tic differential equations.Acta Math Sci, 2001, 21B(1): 131-136
[8]Zhang B G, Zhao T, Lalli B S. Oscillation criteria for nonlinear second o rder elliptic differential equations.Chin Ann of Math, 1996, 17B( 1): 89-102
[9]Swanson C A. Semilinear second order elliptic oscillation. Canad Math Bul l, 1979, 22(2): 139-157
[10]Kamenev I V. An integral criterion for oscillation of linear dif ferential equations. Math Zamtki, 1978,23: 249-251
[11]Yan J. Oscillation theorems for second order linear differential equatio ns with damping. Proc Amer Math Soc,1986,98: 276-282
[12]Philos Ch G. Oscillation theorems for linear differential equations of second order.Arch Math, 1989,53: 483-492
|