数学物理学报 ›› 2004, Vol. 24 ›› Issue (1): 88-93.

• 论文 • 上一篇    下一篇

倒向随机微分方程解的光滑性

 林清泉   

  1. 中国人民大学财政金融学院 中国财政金融政策研究中心 北京 100872
  • 出版日期:2004-02-25 发布日期:2004-02-25
  • 基金资助:

    211工程 十五建设计划重点科研项目,国家自然科学基金资助项目(79790130 )

Smoothness of Solution for |Backward Stochastic Differential Equation

 LIN Qing-Quan   

  • Online:2004-02-25 Published:2004-02-25
  • Supported by:

    211工程 十五建设计划重点科研项目,国家自然科学基金资助项目(79790130 )

摘要:

该文讨论了倒向随机微分方程Y_t=ξ+∫^T_t{g(s,Y_s,Z_s)}ds-∫^T_t{Z_s}dW_s  解在Malliavin微分意义下的光滑性.对任意的n讨论其解在Malliavin 意义下n 阶可微性,并且证明它是一个线性倒向随机微分方程的解,从而说明BSDE解的光滑性.

关键词: 倒向随机微分方程;Malliavin 微分;光滑性.

Abstract:

The author  discusses the smoothness of solution for BSDE Y_t=ξ+∫^T_t{g(s,Y_s,Z_s)}ds-∫^T_t{Z_s}dW_s in Malliavin calculus sense.For any \$n\$ the author  discusses  differentiabilty of n th  order in the Malliavin sense for the solution,and it satisfies a linear BSDE, as a result the soluiton for BSDE is smoothness in the sense.

Key words: Backward stochastic differential equation;Malliavin ca lculus;Smoothness

中图分类号: 

  • 60H