数学物理学报 ›› 2004, Vol. 24 ›› Issue (1): 58-62.

• 论文 • 上一篇    下一篇

位形空间非定域Ward恒等式

 刘斌贝, 李瑞洁, 李子平   

  1. 北京工业大学生命科学与生物工程学院 北京 100022 华北电力大学 (北京)基础部  102206 北京工业大学数理学院 北京 100022
  • 出版日期:2004-02-25 发布日期:2004-02-25

Non local Ward Identity in Configuration Space

 LIU Bin-Bei, LI Rui-Jie, LI Zi-Ping   

  • Online:2004-02-25 Published:2004-02-25

摘要:

 从Faddeev Popov(FP)方法对规范理论给出的位形空间生成泛函出发,导出了位形空间非定域变换下的Ward恒等式。应用于非Abel Chern Simons(CS)理论,得到了CS规范场鬼场正规顶角间的Ward恒等,并把此结果与文献[1]做了对比,对规范理论用位形空间路径积分讨论更简便。

关键词: Ward 恒等式;位形空间生成泛函;Chern Simons理论

Abstract:

By starting from the configuration space generating functional for gauge  theory obtained by using the Faddeev Popov methed, the Ward identity under general non Abelian transformation in configuration space is deduced. By appling  the re sults to non Abel Chern Simons theory, the Ward identity for the gauge ghost field proper vertices has been also derived.The comparison of the result with tho se in ref[1]is discussed.

Key words: Ward identity, Configuration space generating functional, Chern Simons theory

中图分类号: 

  • 70H