[1]Tutte W T. Chromatic sums for rooted planar triangulations: the case λ=1 and λ=2.Canad J Math, 1973,25(2):426-447
[2]Tutte W T. Chromatic sums for rooted planar triangulations II-V: the cas e λ=τ+1; λ=3;λ=∞. Canad J Math, 1973, 25(3): 657-671;780-790; 309-325
[3]Tutte W T. The number of planted planar trees with a given partition. A mer Math Monthly. 1964, 71: 272-277
[4]Liu Y P. Enumerative Theorem of Maps. Dordrecht Boston London: Kluwer, 1999
[5]Liu Y P. On functional equations arising from map enumerations. Discret e Math, 1993, 123: 93-109
[6]Liu Y P. Chromatic sum equations for rooted planar maps. Cong Numer, 1984, 45: 275-280
[7]Liu Y P. Chromatic sum equations for rooted cubic planar maps.Acta Mathematicae Applicatae Sinica, 1987,4(2):136-167
[8]Liu Y P. Chromatic enumeration for rooted outerplanar maps. Chin Ann of Math, 1990, 11B(4): 491-502
[9]Wu Fa′en, Liu Yanpei. Enumeration of one vertex maps with face partitio n in the plane. Acta Mathematica Scientia,2000, 20B(2): 229-234 |