[1]Deimling K. Nonlinear Functional Analysis. New York: SpringerVerlag, 1985
[2]Luo Jiaowan, Yu Jiangshe. Global asymptotic stability of nonautonomous ma thematical ecological equations with distributed deviating arguments. Acta Mathematica Sinica, 1998,41(4):1273- 1282
[3]Krasnoselskii M A. Positive Solution of Operator Equation. Gorningen: Noo rdhoff, 1964
[4]Wang P, Liang M. The existence and behavior of periodic solution of Hema tcpoiesis model.Mathematica Applicate, 1995, 8(3): 434-439
[5]Wang P. Existence and global attractivity of periodic solution of intero differential equation in population dynamics.Acta Appl Math, 1996, 12(3): 427-434
[6]Gurney W S C, Blythe S P, Nisbet R M. Nicholson's blowflies revisited. Nature, 1980,287(2): 17-20
[7]Gopalsamy K, Weng P. Global attractivity and level crossing in model of Hematopoiesis. Bulletin of the Institute of Mathematics,Academia Sinica, 1994, 22(3): 341-360
[8]Joseph W H So, Yu Jianshe. Global attractivity and uniformly persistenc e in Nicholson's blowflies. DifferentialEquation and Dynamics Systems, 1994, 2(3): 11-18
[9]Mackey M C, Galass. Oscillations and chaos in phycological control system s. Sciences, 1987, 197(2): 287-289
[10]Yoshizawa T. Stability Theory by Liapunov Second Method.Japan: The Mathematical Society of Japan, 1966
[11]Lan K, Webb J L R. Positive solutions of semilinear differential equat ions with singularities. J Differential Equations, 1998, 148(3):407-421
[12]Wan A Y, Jiang D Q. Existence of positive periodic solutions for functi onal differential equations.Kyushu Journal of Mathematics. 2002, 56(1): 193-202
[13]Jiang D Q, Wei J J. Existence of positive periodic solutions for Volter ra integrodifferential equations. Acta Mathematica Scientia,2002,21B(1): 553-560 |