[1]Liu Yanpei. Embeddability in Graphs. Beijing: Science Press, 1994
[2]Nordhaus E, Stewart B, White A. On the maximum genus of a graph. J Com binnatorial Theory, 1979, 26B: 217-225
[3]Bondy J A, Murty U S R. Graph Theory with Application. London: Mac Millan,1976
[4]Nebesky L.N^2 locally connected graph and their upper embeddability. J Czechoslovak Math, 1985, 35: 162-166
[5]Nedeal R, Skoveria M. On upper embeddable graphs with short faces.Topics in Combinatorics and Graph Theory, Physicav erlay. In: Bodenierk R, Henn R, eds. New York: Heidelberg, 1990. 519-529
[6]Skoveria M. The maximum genus of graph of diameter two. Discrete Math, 1991, 87: 175-180
[7]Fu Huanglin, Tsai Mingchun. The maximum genus of diameter three. Australasian Journal of Combinatorics, 1996, 14: 171-187
[8]黄元秋, 刘彦佩. 图的最大亏格与2因子. 数学年刊, 1997, 18A(5): 587-596
[9]黄元秋, 刘彦佩. 图的上可嵌入性与非邻节点的度和. 数学年刊, 1998, 19A(5): 651-656
[10]Liu Yanpei. The maximum orientable genus of some typical classe s of graphs. Acta Math Sinica, 1981, 24: 817-832
[11]Skoveria M, Nedela R. The maximum genus of vertextransitive graphs. Discrete Mathematics, 1989, 78: 179-186
[12]Kanchi S P, Chen J. Tight lower bound on the maximum genus of a 2conn ected simplicial graph. Manuscript, 1992
[13]Chen J, Archdeacon D, Gross J L. Maximum genus and connectivity. Dis crete Mathematics, 1996, 149: 19-29
[14]Chen J, Kanchi S P, Gross J L. A tight lower bound on the maximum gen us of a simplicial graph.Discrete Mathematics, 1996, 15: 83-102
[15]黄元秋, 刘彦佩. 与最小度有关的图的最大亏格下界. 应用数学学报, 1999, 22(2): 193-198
[16]黄元秋, 刘彦佩. 图的上可嵌入性. 中国科学, 1998,28A(3): 223-228
[17]黄元秋. 图的最大亏格与图的顶点划分. 数学学报, 2000, 43(4): 645-652 |