数学物理学报 ›› 2009, Vol. 29 ›› Issue (3): 751-756.

• 论文 • 上一篇    下一篇

局部对称黎曼流形中的紧致极小子流形的Ricci曲率

  

  1. (湖州师范学院 理学院  |浙江 湖州 313000);(宁夏大学数计学院 |宁夏 银川 750021)
  • 收稿日期:2007-09-17 修回日期:2008-11-09 出版日期:2009-06-25 发布日期:2009-06-25
  • 基金资助:

    浙江省自然科学基金(Y607136)资助

The Compact Minimal Submanifolds in Locally Symmetric Space

  1. (Department of Mathematics, Teachers College of Huzhou, Zhejiang Huzhou 313000);(Department of Mathematics and Computer,Ningxia University, Ningxia Yinchuan 750021)
  • Received:2007-09-17 Revised:2008-11-09 Online:2009-06-25 Published:2009-06-25
  • Supported by:

    浙江省自然科学基金(Y607136)资助

摘要:

N n+p是截面曲率KN 满足1/2 < δ ≤ KN ≤ 1 的n+p 维局部对称完备的 δ-Pinching黎曼流形. MnNn+p 的紧致极小子流形. 该文讨论了这类子流形关于Ricci曲率有关的Pinching定理.

关键词: 局部对称, 极小子流形, 全测地

Abstract:

 Let N n+p be an n+p-dimensional locally symmetric complete Riemannian manifold with sectional curvature KN satisfies 1/2 < δ ≤ KN ≤ 1
 and M n be an n-dimensinal compact minimal submanifold  in N n+p. In this paper, we discuss the Pinching theorem about this sub manifold with the square of the length of the second fundamemtal form and Ricci curvature.

Key words: Locally symmetry, Minimal submanifolds, Totally geodesic

中图分类号: 

  • 53B