数学物理学报 ›› 2009, Vol. 29 ›› Issue (3): 741-750.

• 论文 • 上一篇    下一篇

具有核的态射的 w -加权Drazin逆

  

  1. (1. 广西民族大学 数学与计算机科学学院 |广西 南宁 530006; |2. 衡水学院 |数学与计算机科学系 |河北 衡水 053000)
  • 收稿日期:2007-03-04 修回日期:2009-01-08 出版日期:2009-06-25 发布日期:2009-06-25
  • 基金资助:

    广西科学基金项目(桂科青0640016)和广西民族大学重大科研项目联合资助

The w-weighted Drazin Inverse of Morphisms with Kernels

  1. (1. College of Mathematics and Computer Science, Guangxi University for Nationalities, Guangxi Nanning 530006|2. Department of Mathematics and Information, Hengshui University, Hebei Hengshui 053000)
  • Received:2007-03-04 Revised:2009-01-08 Online:2009-06-25 Published:2009-06-25
  • Supported by:

    广西科学基金项目(桂科青0640016)和广西民族大学重大科研项目联合资助

摘要:

该文中, a: X → Y, w: Y →  X为加法范畴 £ 中的态射, k1: K 1X是(aw)i 的核, k2: K2 Y是(wa)j 的核. 那么下列命题等价: (1) a £ 中有w  -加权Drazin逆a d,w; (2)  1X→ L1是(aw)i 的上核,  k1  1(aw)i+1}+  1(k1  1)-1k1是可逆的; (3)   2: Y →  L2是(wa)j 的上核, k2  2和(wa)j+12(k2  2)-1k2是可逆的. 作者又研究了具有{1} -逆的正合加法范畴中态射的w -加权Drazin 逆的柱心幂零分解, 证明了其存在性. 作者把具有核的态射的Drazin 逆及其柱心幂零分解推广到具有核的态射的w -加权 Drazin 逆及其柱心幂零分解, 并给出了表达式.

关键词: 正合加法范畴, w -加权Drazin逆, 柱心幂零分解

Abstract:

Let a: X →  Y, w:  Y →  X be morphisms in an additive category, k1: K1 →  X  be a kernel of (aw) i, k2: K2 → Y  be a kernel of (wa) i. Then the following propositions are equivalent: (1) a has a  w -weighted Drazin inverse ad,w in £ ; (2)  1: X → L1 is cokernel of (aw) i, k1 1 and (aw) i+1+ 1(k1 1) -1k1 are invertible; (3)  2 : Y →  L2 is cokernel of (wa) j, k2  2 and (wa) j+1+ 2(k2  2)-1k2 are invertible. And the Core-Nilpotent decomposition of w-weighted Drazin inverse of morphisms in the exact additive category £ with {1}-inverse is studied, the existence for the Core-Nilpotent decomposition of  w - weighted Drazin inverse of morphisms is proved. The extension of Drazin inverse of morphisms with kernels and its Core-Nilpotent decomposition are introduced and representations for its  w - weighted Drazin inverse and Core-Nilpotent decomposition are derived.

Key words: Exact additive category,  w-weighted Drazin inverse, Core-nilpotent decomposition

中图分类号: 

  • 15A09