数学物理学报 ›› 2009, Vol. 29 ›› Issue (3): 656-668.

• 论文 • 上一篇    下一篇

关于弱压缩算子的变分不等式解的粘滞逼近算法

  

  1. (河南师范大学 数学与信息科学学院 河南 新乡 453007)
  • 收稿日期:2007-12-20 修回日期:2009-04-15 出版日期:2009-06-25 发布日期:2009-06-25
  • 基金资助:

    教育部科技司科学基金(208081)和河南师范大学青年基金资助

Solving Variational Inequality with Weak Contraction by Using Viscosity Approximation Methods

  1. (College of Mathematics and Information Science, Henan Normal University, Henan Xinxiang  453007)
  • Received:2007-12-20 Revised:2009-04-15 Online:2009-06-25 Published:2009-06-25
  • Supported by:

    教育部科技司科学基金(208081)和河南师范大学青年基金资助

摘要:

在严格凸且具有一致Gâteaux可微范数的Banach空间$E$框架内, 该文借助于两种粘滞逼近算法去近似逼近关于弱压缩算子的变分不等式解并且也获得了相应的收敛率估计.

关键词: 粘滞逼近算法, 非扩张映射序列, 弱压缩算子, 收敛率估计, 严格凸Banach空间

Abstract:

In this paper, under the framework of a strictly convex Banach space with a uniformly Gâteaux differentiable norm, we study strong convergence of two explicit viscosity approximation methods for finding a solution to the variational inequality with weakly contractive mapping A,  and give the estimate of convergence rate.

Key words: Viscosity approximation methods, Nonexpansive mappings sequence, Weak contractions, The estimate of convergence rate, Strictly convex Banach space

中图分类号: 

  • 47H06