[1]Tu Guizhang. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys, 1989, (2):330:3
[2]郭福奎. 一族可积Hamilton方程. 应用数学学报,2000,23(2):181-187
[3]郭福奎. 可积的与Hamilton形式的NLSMKdV方程族. 数学学报,1997,40(6):801-804
[4]郭福奎. Loop代数A_{-1}的子代数与可积Hamilton方程族. 数学物理学报,1990,10(5):507-512
[5]屠规彰. 一族新的可积系及其Hamilton结构. 中国科学(A辑),1998,12:1243-1252
[6]Ma Wenxiu. A new hierarchy of Liouville integrable generalized Hamiltonian equations and itsreduction. Chinese J Contemp Math, 1992, 13(1);79-89
[7]Fan Engui. A Liouville integrable Hamiltonian system associated with a generalized KaupNewell spectral problem. Physica A, 2001, 301:105-113
[8]Zhang Yufeng. A generalized BPT hierarchy and its BiHamiltonian structure. Phys Lett A, 2003,317(3):280-286
[9]郭福奎,张玉峰. 一类孤子方程族及其多个Hamilton结构. 数学学报,2004,47(2):349-364
[10]Zhang Yufeng. An integrable Hamiltonian hierarchy, a high dimensional Loop algebra and an associated integrable system. Chinese Phys, 2004, 12(11): 1194-1208
[11]Zhang Yufeng and Zhang Hongqing. Integrable coupling of Td hierarchy. J Math Phys, 2002, 43(1):466
[12]张玉峰. 一个Lie代数的子代数及其相关的二类Loop代数. 数学学报,2005,1 |