数学物理学报

• 论文 • 上一篇    下一篇

矩阵方程A1X1B1 + A2X2B2 + · · · + AlXlBl = C的中心对称解及其最佳逼近

1,2彭卓华; 2胡锡炎; 2张磊   

  1. (1.湖南科技大学数学与计算科学学院 湖南 湘潭 411201; 2.湖南大学数学与计量经济学院 长沙 410082)

  • 收稿日期:2006-12-25 修回日期:2008-06-08 出版日期:2009-02-25 发布日期:2009-02-25
  • 通讯作者: 彭卓华
  • 基金资助:
    国家自然科学基金(10571047, 10771058)、湖南省自然科学基金(06JJ2053)和湖南省教育厅重点项目(06A017)资助.

The Centrosymmetric Solutions of Matrix Equation A1X1B1+A2X2B2+…+AlXlBl=C and its Optimal Approximation

1,2Peng Zhuohua;2Hu Xiyan;2Zhang Lei   

  1. (1.School of Mathematics and Computing Science, Hunan University of Science and Technology, Hunan Xiangtan 411201; 2.School of Mathematics and Econometrics, Hunan University, Changsha 410082)
  • Received:2006-12-25 Revised:2008-06-08 Online:2009-02-25 Published:2009-02-25
  • Contact: Peng Zhuohua

摘要: 设矩阵X=(xij) ∈Rn×n, 如果xij=xn+1-i, n+1-j (i,j=1,2, …,n), 则称X是中心对称矩阵.
该文构造了一种迭代法求矩阵方程A1X1B1+A2X2B2+…+AlXlBl=C的中心对称解组(其中[X1, X2, …, Xl]是实矩阵组). 当矩阵方程相容时, 对任意初始的中心对称矩阵组[X1(0), X2(0), …, Xl(0)], 在没有舍入误差的情况下,经过有限步迭代,得到它的一个中心对称解组, 并且, 通过选择一种特殊的中心对称矩阵组, 得到它的最小范数中心对称解组. 另外, 给定中心对称矩阵组[X1, X2, …, Xl], 通过求矩阵方程A1X1B1+A2X2B2+…+AlXlBl=C(其中C=C-A1X1B1-A2X2B2-…-AlXlBl)的中心对称解组, 得到它的最佳逼近中心对称解组. 实例表明这种方法是有效的.

关键词: 迭代法, 矩阵方程, 中心对称解组, 最小范数解组, 最佳逼近解组.

Abstract: A matrix X=(xij)∈Rn×n is said to be centrosymmetric if xij=xn+1-i, n+1-j(i, j=1,2, …, n). In this paper, an iterative method is constructed for finding the centrosymmetric solutions of matrix equation A1X1B1+A2X2B2+…+AlXlBl=C, where [X1, X2,…, Xl] is a real matrix group. By this iterative method, the solvability of the matrix equation can be judged automatically. When the matrix equation is consistent, for any initial centrosymmetric matrix group
[X1(0), X2(0),…, Xl(0), a centrosymmetric solution group can be obtained within finite iteration steps in the absence of roundoff errors, and the least norm centrosymmetric solution group can be obtained by choosing a special kind of initial centrosymmetric matrix group . In addition, the optimal approximation centrosymmetric solution group to a given centrosymmetric matrix group
[X1, X2, …, Xl] in Frobenius norm can be obtained by finding the least norm centrosymmetric solution group of new matrix equation A1X1B1+A2X2B2+…+AlXlBl=C, where C=C-A1X1B1-A2X2B2-…-AlXlBl. Given numerical examples show that the iterative method is efficient.

Key words: Iterative method, Matrix equation, Centrosymmetric solution group, Least-norm solution group, Optimal approximation solution.

中图分类号: 

  • 65F15