1,2彭卓华; 2胡锡炎; 2张磊
(1.湖南科技大学数学与计算科学学院 湖南 湘潭 411201; 2.湖南大学数学与计量经济学院 长沙 410082)
1,2Peng Zhuohua;2Hu Xiyan;2Zhang Lei
摘要: 设矩阵X=(xij) ∈Rn×n, 如果xij=xn+1-i, n+1-j (i,j=1,2, …,n), 则称X是中心对称矩阵.
该文构造了一种迭代法求矩阵方程A1X1B1+A2X2B2+…+AlXlBl=C的中心对称解组(其中[X1, X2, …, Xl]是实矩阵组). 当矩阵方程相容时, 对任意初始的中心对称矩阵组[X1(0), X2(0), …, Xl(0)], 在没有舍入误差的情况下,经过有限步迭代,得到它的一个中心对称解组, 并且, 通过选择一种特殊的中心对称矩阵组, 得到它的最小范数中心对称解组. 另外, 给定中心对称矩阵组[X1, X2, …, Xl], 通过求矩阵方程A1X1B1+A2X2B2+…+AlXlBl=C(其中C=C-A1X1B1-A2X2B2-…-AlXlBl)的中心对称解组, 得到它的最佳逼近中心对称解组. 实例表明这种方法是有效的.
中图分类号: