数学物理学报 ›› 2024, Vol. 44 ›› Issue (6): 1577-1594.

• • 上一篇    下一篇

一个扩散模型中恐惧效应与集群行为协同诱导的时空动力学研究

肖江龙1(),宋永利2(),夏永辉3,*()   

  1. 1浙江师范大学数学科学学院 浙江金华 321004
    2杭州师范大学数学学院 杭州 311121
    3佛山大学数学学院 广东佛山 528000
  • 收稿日期:2023-08-02 修回日期:2024-04-16 出版日期:2024-12-26 发布日期:2024-11-22
  • 通讯作者: *夏永辉,Email: yhxia@zjnu.cn
  • 作者简介:肖江龙,Email: jianglongxiao@zjnu.edu.cn;|宋永利,Email: songyl@hznu.edu.cn
  • 基金资助:
    国家自然科学基金(11931016);浙江省自然科学基金(LZ23A010001);浙江省自然科学基金(LZ24A010006)

Spatiotemporal Dynamics Induced by the Interaction Between Fear and Schooling Behavior in a Diffusive Model

Xiao Jianglong1(),Song Yongli2(),Xia Yonghui3,*()   

  1. 1School of Mathematical Sciences, Zhejiang Normal University, Zhejiang Jinhua 321004
    2School of Mathematics, Hangzhou Normal University, Hangzhou 311121
    3School of Mathematics, Foshan University, Guangdong Foshan 528000
  • Received:2023-08-02 Revised:2024-04-16 Online:2024-12-26 Published:2024-11-22
  • Supported by:
    NSFC(11931016);Natural Science Foundation of Zhejiang Province(LZ23A010001);Natural Science Foundation of Zhejiang Province(LZ24A010006)

摘要:

该文研究了在齐次 Neumann 边界条件下扩散的捕食者--猎物模型的时空动力学. 该文研究表明, 恐惧和集群行为之间的相互作用产生了非常丰富和有趣的时空动力学. 详细讨论了 Turing 不稳定性和 Turing-Hopf 分支产生的条件. 利用规范型理论对 Turing-Hopf 分支点附近的时空动力学进行了分类, 并用丰富的数值模拟验证了理论分析. 最后, 总结了恐惧效应对集群行为的巨大影响. 发现猎物的集群行为不能抵消高水平的恐惧, 但可以抵消低水平的恐惧. 此外, 恐惧效应与集群行为共同诱发了系统的 Turing 不稳定性. 然而, 对于没有集群行为的系统, 恐惧效应既不会改变共存平衡点的稳定性, 也不会引起系统产生周期解或 Turing 不稳定性.

关键词: Turing-Hopf 分支, Turing 不稳定性, 集群行为, 恐惧效应, 动力学分类, 捕食者-猎物模型

Abstract:

In this paper, we study the spatiotemporal dynamics in a diffusive predator-prey model with the homogeneous Neumann boundary condition. Our study indicates that the interaction between fear and schooling behavior induces very rich and interesting spatiotemporal dynamics. The conditions for Turing instability and Turing-Hopf bifurcation emerging are explored at length. By utilizing the normal form method, the spatiotemporal dynamics of the spatial model near the Turing-Hopf bifurcation point are classified. And rich numerical simulations are used to confirm the theoretical analysis. Finally, we summarize the great influence of the fear effect and schooling behavior. We found that the schooling behavior of prey cannot counteract high-level fear, while it offsets the low-level fear. Moreover, the fear effect induces Turing instability of the system with the schooling behavior. However, the fear effect neither changes the stability of coexistence equilibrium, nor induces periodic solutions or Turing instability of the system without the schooling behavior.

Key words: Turing-Hopf bifurcation, Turing instability, Schooling behavior, Fear effect, Dynamical classification, Predator-prey

中图分类号: 

  • 0175.23