数学物理学报 ›› 2024, Vol. 44 ›› Issue (6): 1563-1576.

• • 上一篇    下一篇

脉冲分数阶格点系统的不变测度

张怡然*(),黎定仕()   

  1. 西南交通大学数学学院 成都 610031
  • 收稿日期:2024-01-23 修回日期:2024-05-06 出版日期:2024-12-26 发布日期:2024-11-22
  • 通讯作者: *张怡然,Email: zhangyiran@my.swjtu.edu.cn
  • 作者简介:黎定仕,Email: lidingshi@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(11971394);国家自然科学基金(12371178);中央引导地方基金(2023ZYD0002)

Invariant Measure of Impulsive Fractional Lattice System

Zhang Yiran*(),Li Dingshi()   

  1. School of Mathematics, Southwest Jiaotong University, Chengdu 610031
  • Received:2024-01-23 Revised:2024-05-06 Online:2024-12-26 Published:2024-11-22
  • Supported by:
    NSFC(11971394);NSFC(12371178);Fundamental Research Funds for the Central Universities(2023ZYD0002)

摘要:

该文首先证明了分数阶格点系统解的全局适定性, 然后验证了解算子生成的过程是一个连续过程, 并证明该过程具有拉回渐近零性和拉回吸引子, 最后通过广义 Banach 极限构造了该过程的一组 Borel 不变概率测度.

关键词: 不变测度, 脉冲格点系统, 分数阶, 拉回吸引子

Abstract:

This paper first verifies the global validity of the solution of fractional lattice system. Then the paper establishes that the process generated by the solution operator is a continuous process, and it is verified that the process has pull-back asymptotic zero and pull-back attractor, and finally construct a set of Borel invariant probability measures of the process through the generalized Banach limit.

Key words: Invariant measure, Impulsive lattice system, Fractional, Pullback attractor

中图分类号: 

  • O193