数学物理学报 ›› 2024, Vol. 44 ›› Issue (6): 1550-1562.
收稿日期:
2023-08-31
修回日期:
2024-04-29
出版日期:
2024-12-26
发布日期:
2024-11-22
通讯作者:
*刘炎, Email: ly801221@163.com
作者简介:
石金诚, Email: 基金资助:
Received:
2023-08-31
Revised:
2024-04-29
Online:
2024-12-26
Published:
2024-11-22
Supported by:
摘要:
该文研究了一类带不同幂次型非线性项的半线性三阶发展方程的 Cauchy 问题, 其线性化模型来自于考虑 Fourier 法则的经典热弹性板方程组. 首先, 通过适当的远离渐近线的
中图分类号:
石金诚, 刘炎. 带不同幂次型非线性项的半线性三阶发展方程整体解的存在性与爆破[J]. 数学物理学报, 2024, 44(6): 1550-1562.
Shi Jincheng, Liu Yan. Global Existence and Blow-Up for Semilinear Third Order Evolution Equation with Different Power Nonlinearities[J]. Acta mathematica scientia,Series A, 2024, 44(6): 1550-1562.
[1] | Aslan H S, Chen W. Global existence and blow-up for weakly coupled systems of semilinear thermoelastic plate equations. Preprint. arXiv:1904.00778, 2019 |
[2] | Avalos G, Lasiecka I. Exponential stability of a thermoelastic system without mechanical dissipation. Rend Istit Mat Univ Trieste Suppl, 1997, 28: 1-28 |
[3] | Bongarti M, Sutthirut C, Lasiecka I. Vanishing relaxation time dynamics of the Jordan Moore-Gibson-Thompson equation arising in nonlinear acoustics. J Evol Equ, 2021, 21(3): 3553-3584 |
[4] | Chen W. Cauchy problem for thermoelastic plate equations with different damping mechanisms. Commun Math Sci, 2020, 18(2): 429-457 |
[5] | Chen W, Ikehata R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J Differential Equations, 2021, 292: 176-219 |
[6] | Chen W, Ikehata R, Palmieri A. Asymptotic behaviors for Blackstock's model of thermoviscous flow. Indiana Univ Math J, 2023, 72(2): 489-552 |
[7] | Chen W, Palmieri A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discrete Contin Dyn Syst, 2020, 40(9): 5513-5540 |
[8] | Chen W, Palmieri A. A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case. Evol Equ Control Theory, 2021, 10(4): 673-687 |
[9] | D'Abbicco M, Ebert M R. A new phenomenon in the critical exponent for structurally dampedsemi-linear evolution equations. Nonlinear Anal, 2017, 149: 1-40 |
[10] | D'Abbicco M, Reissig M. Semilinear structural damped waves. Math Methods Appl Sci, 2014, 37(11): 1570-1592 |
[11] | Dell'Oro F, Lasiecka I, Pata V. The Moore-Gibson-Thompson equation with memory in the critical case. J Differential Equations, 2016, 261(7): 4188-4222 |
[12] | Denk R, Racke R. $L^p$-resolvent estimates and time decay for generalized thermoelastic plate equations. Electron J Differential Equations, 2006, 48: Article 16 |
[13] | Denk R, Racke R, Shibata Y. $L_p$ theory for the linear thermoelastic plate equations in bounded and exterior domains. Adv Differential Equations, 2009, 14(7/8): 685-715 |
[14] | Denk R, Racke R, Shibata Y. Local energy decay estimate of solutions to the thermoelastic plate equations in two,- and three-dimensional exterior domains. Z Anal Anwend, 2010, 29(1): 21-62 |
[15] | Fischer L. Globale Lösungen zu Cauchy problemen bei nichtlinearen thermoelastischen Plattengleichungen. Konstanz, Germany: Master Thesis, University of Konstanz, 2016 |
[16] | Hidano K, Yokoyama K. Lifespan of small solutions to a system of wave equations. Nonlinear Anal, 2016, 139: 106-130 |
[17] | Ikeda M, Sobajima M, Wakasa K. Blow-up phenomena of semilinear wave equations and their weakly coupledsystems. J Differential Equations, 2019, 267(9): 5165-5201 |
[18] | Ikehata R, Tanizawa K. Global existence of solutions for semilinear damped wave equations in ${\rm R}^N$ with noncompactly supported initial data. Nonlinear Anal, 2005, 61(7): 1189-1208 |
[19] | Kaltenbacher B, Lasiecka I, Pospieszalska M K. Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound. Math Models Methods Appl Sci, 2012, 22(11): 1250035 |
[20] | Kim J U. On the energy decay of a linear thermoelastic bar and plate. SIAM J Math Anal, 1992, 23(4): 889-899 |
[21] | Lasiecka I, Triggiani R. Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations. Adv Differential Equations, 1998, 3(3): 387-416 |
[22] | Lasiecka I, Triggiani R. Analyticity, and lack thereof, of thermo-elastic semigroups. ESAIM Proc EDP Sciences, 1998, 4: 199-222 |
[23] | Lasiecka I, Triggiani R. Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C. Abstr Appl Anal, 1998, 3(1/2): 153-169 |
[24] | Lasiecka I, Triggiani R. Analyticity of thermo-elastic semigroups with free boundary conditions. Ann Scuola Norm Sup Pisa CI Sci, 1998, 4(3/4): 457-482 |
[25] | Liu Y, Chen W. Asymptotic profiles of solutions for regularity-loss-type generalized thermoelastic plate equations and their applications. Z Angew Math Phys, 2020, 71: Article 55 |
[26] | Liu K, Liu Z. Exponential stability and analyticity of abstract linear thermoelastic systems. Z Angew Math Phys, 1997, 48(6): 885-904 |
[27] | Muñoz Rivera J E, Racke R. Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type. SIAM J Math Anal, 1995, 26(6): 1547-1563 |
[28] | Muñoz Rivera J E, Racke R. Large solutions and smoothing properties for nonlinear thermoelastic systems. J Differential Equations, 1996, 127(2): 454-483 |
[29] | Narazaki T. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Discrete Contin Dyn Syst, Dynamical systems, differential equations and applications 7th AIMS Conference. 2009, 2009: 592-601. doi: 10.3934/proc.2009.2009.592 |
[30] | Nishihara K. Asymptotic behavior of solutions for a system of semilinear heat equations and the corresponding damped wave system. Osaka J Math, 2012, 49(2): 331-348 |
[31] | Nishihara K, Wakasugi Y. Critical exponent for the Cauchy problem to the weakly coupled damped wave system. Nonlinear Anal, 2014, 108: 249-259 |
[32] | Nishihara K, Wakasugi Y. Critical exponents for the Cauchy problem to the system of wave equations with time or space dependent damping. Bull Inst Math Acad Sin (NS), 2015, 10(3): 283-309 |
[33] | Ogawa T, Takeda H. Global existence of solutions for a system of nonlinear damped wave equations. Differential Integral Equations, 2010, 23(7/8): 635-657 |
[34] | Pham D T, Mohamed Kainane M, Reissig M. Global existence for semi-linear structurally damped $\sigma$-evolution models. J Math Anal Appl, 2015, 431: 569-596 |
[35] | Racke R, Said-Houari B. Decay rates and global existence for semilinear dissipative Timoshenko systems. Quart Appl Math, 2013, 71(2): 229-266 |
[36] | Racke R, Ueda Y. Dissipative structures for thermoelastic plate equation in $ R^n$. Adv Differential Equations, 2016, 21(7/8): 610-630 |
[37] | Racke R, Ueda Y. Nonlinear thermoelastic plate equations-global existence and decay rates for the Cauchy problem. J Differential Equations, 2017, 263(12): 8138-8177 |
[38] | Racke R, Wang W, Xue R. Optimal decay rates and global existence for a semilinear Timoshenko system with two damping effects. Math Methods Appl Sci, 2017, 40(1): 210-222 |
[39] | Said-Houari B. Decay properties of linear thermoelastic plates: Cattaneo versus Fourier law. Appl Anal, 2013, 92(2): 424-440 |
[40] | Sobolev S L. On a theorem of functional analysis. Mat Sbornik, 1938, 4(4): 471-497 |
[41] | Sun F, Wang M. Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping. Nonlinear Anal, 2007, 66(12): 2889-2910 |
[42] | Todorova G, Yordanov B. Critical exponent for a nonlinear wave equation with damping. J Differential Equations, 2001, 174(2): 464-489 |
[43] | Zhang Q S. A blow-up result for a nonlinear wave equation with damping: the critical case. C R Acad Sci Paris Sér I Math, 2001, 333(2): 109-114 |
[1] | 高晓茹, 李建军, 徒君. 一类带有时变系数的分数阶扩散方程解的爆破性[J]. 数学物理学报, 2024, 44(5): 1230-1241. |
[2] | 王伟敏, 闫威. 修正Kawahara方程的收敛问题与色散爆破[J]. 数学物理学报, 2024, 44(3): 595-608. |
[3] | 李锋杰, 李平. 伪抛物型 p-Kirchhoff 方程的爆破解[J]. 数学物理学报, 2024, 44(3): 717-736. |
[4] | 简慧, 龚敏, 王莉. 带部分调和势的非齐次非线性 Schrödinger 方程的爆破解[J]. 数学物理学报, 2023, 43(5): 1350-1372. |
[5] | 沈旭辉,丁俊堂. 具有梯度源项和非线性边界条件的多孔介质方程组解的爆破[J]. 数学物理学报, 2023, 43(5): 1417-1426. |
[6] | 蔡森林,周寿明,陈容. 大振幅浅水波模型的柯西问题研究[J]. 数学物理学报, 2023, 43(4): 1197-1120. |
[7] | 欧阳柏平. 非线性记忆项的Euler-Poisson-Darboux-Tricomi方程解的爆破[J]. 数学物理学报, 2023, 43(1): 169-180. |
[8] | 冯美强, 张学梅. Monge-Ampère方程边界爆破解的最优估计和不存在性[J]. 数学物理学报, 2023, 43(1): 181-202. |
[9] | 鲁呵倩,张正策. 带非线性梯度项的p-Laplacian抛物方程的临界指标[J]. 数学物理学报, 2022, 42(5): 1381-1397. |
[10] | 万雅琪,陈晓莉. 压力项属于Triebel-Lizorkin空间的三维不可压Navier-Stokes方程的正则性准则[J]. 数学物理学报, 2022, 42(5): 1473-1481. |
[11] | 何春蕾,刘子慧. 一类双曲平均曲率流的对称与整体解[J]. 数学物理学报, 2022, 42(4): 1089-1102. |
[12] | 邱臻,王光武. 量子Navier-Stokes-Landau-Lifshitz方程光滑解的爆破问题[J]. 数学物理学报, 2022, 42(4): 1074-1088. |
[13] | 杨连峰,曾小雨. 拟相对论薛定谔方程基态解的存在性与爆破行为[J]. 数学物理学报, 2022, 42(1): 165-175. |
[14] | 杜玉阁,田书英. 一类带对数非线性项的抛物方程解的存在性和爆破[J]. 数学物理学报, 2021, 41(6): 1816-1829. |
[15] | 合敬然,郭合林,王文清. 一类带强制位势的p-Laplace特征值问题[J]. 数学物理学报, 2021, 41(5): 1323-1332. |
|