数学物理学报 ›› 2024, Vol. 44 ›› Issue (3): 563-574.

• • 上一篇    下一篇

全纯系数形式幂级数的收敛集

刘华1,*(),Basma Al-Shutnawi2()   

  1. 1.上海电子信息职业技术学院 上海 201411
    2.Technical University Tafila (约旦) 661109
  • 收稿日期:2022-09-15 修回日期:2023-10-13 出版日期:2024-06-26 发布日期:2024-05-17
  • 通讯作者: *刘华, Email: daliuhua@163.com
  • 作者简介:Basma Al-Shutnawi, Email: salmashut@yahoo.com

On Convergence Sets of Power Series with Holomorphic Coefficients

Liu Hua1,*(),Basma Al-Shutnawi2()   

  1. 1. Shanghai Technical Institute of Electronics and Information, Shanghai 201411
    2. Department of Mathematics,Tafila Technical University, Tafila 661109
  • Received:2022-09-15 Revised:2023-10-13 Online:2024-06-26 Published:2024-05-17

摘要:

该文研究形式幂级数 f(z,t)=n=0fn(z)tn 的收敛集, 这里系数 fn(z) 是复平面上某个域 Ω 上的全纯函数. Ω 的一个子集 E 被称为 Ω 上的收敛集, 如果存在形式幂级数 f(z,t) 使得 E 恰好包含使得 f(z,t) 作为 t 的幂级数在原点的某个邻域内收敛的所有 z. σ-凸集被定义为可数个多项式紧凸子集的并. 证明了复平面的子集是收敛集当且仅当它是 σ-凸的.

关键词: 形式幂级数, 解析函数, 收敛集

Abstract:

We consider convergence sets of formal power series f(z,t)=n=0fn(z)tn, where fn(z) are holomorphic functions on a domain Ω in C. A subset E of Ω is said to be a convergence set in Ω if there is a series f(z,t) such that E is exactly the set of points z for which f(z,t) converges as a power series in a single variable t in some neighborhood of the origin. A σ-convex set is defined to be the union of a countable collection of polynomially convex compact subsets. We prove that a subset of C is a convergence set if and only if it is σ-convex.

Key words: Formal power series, Analytic functions, Convergence sets

中图分类号: 

  • O174.56