数学物理学报 ›› 2024, Vol. 44 ›› Issue (3): 563-574.

• • 上一篇    下一篇

全纯系数形式幂级数的收敛集

刘华1,*(),Basma Al-Shutnawi2()   

  1. 1.上海电子信息职业技术学院 上海 201411
    2.Technical University Tafila (约旦) 661109
  • 收稿日期:2022-09-15 修回日期:2023-10-13 出版日期:2024-06-26 发布日期:2024-05-17
  • 通讯作者: *刘华, Email: daliuhua@163.com
  • 作者简介:Basma Al-Shutnawi, Email: salmashut@yahoo.com

On Convergence Sets of Power Series with Holomorphic Coefficients

Liu Hua1,*(),Basma Al-Shutnawi2()   

  1. 1. Shanghai Technical Institute of Electronics and Information, Shanghai 201411
    2. Department of Mathematics,Tafila Technical University, Tafila 661109
  • Received:2022-09-15 Revised:2023-10-13 Online:2024-06-26 Published:2024-05-17

摘要:

该文研究形式幂级数 $ f(z,t)=\sum\limits_{n=0}^{\infty} f_n(z)t^n $ 的收敛集, 这里系数 $ f_n(z) $ 是复平面上某个域 $ \Omega $ 上的全纯函数. $ \Omega $ 的一个子集 $ E $ 被称为 $ \Omega $ 上的收敛集, 如果存在形式幂级数 $ f(z,t) $ 使得 $ E $ 恰好包含使得 $ f(z,t) $ 作为 $ t $ 的幂级数在原点的某个邻域内收敛的所有 $ z $. $\sigma$-凸集被定义为可数个多项式紧凸子集的并. 证明了复平面的子集是收敛集当且仅当它是 $ \sigma $-凸的.

关键词: 形式幂级数, 解析函数, 收敛集

Abstract:

We consider convergence sets of formal power series $ f(z,t)=\sum\limits_{n=0}^{\infty} f_n(z)t^n $, where $ f_n(z) $ are holomorphic functions on a domain $ \Omega $ in $ \mathbb{C} $. A subset $ E $ of $ \Omega $ is said to be a convergence set in $ \Omega $ if there is a series $ f(z,t) $ such that $ E $ is exactly the set of points $ z $ for which $ f(z,t) $ converges as a power series in a single variable $ t $ in some neighborhood of the origin. A $ \sigma $-convex set is defined to be the union of a countable collection of polynomially convex compact subsets. We prove that a subset of $ \mathbb{C} $ is a convergence set if and only if it is $ \sigma $-convex.

Key words: Formal power series, Analytic functions, Convergence sets

中图分类号: 

  • O174.56