数学物理学报 ›› 2024, Vol. 44 ›› Issue (3): 547-562.

• • 上一篇    下一篇

$\mathfrak{m}$-WG 逆的性质和计算

韦华全1(),吴辉1,*(),刘晓冀2(),靳宏伟3()   

  1. 1.广西大学数学与信息科学学院 南宁 530004
    2.广西职业师范学院教育学院 南宁 530007
    3.广西民族大学数学与物理学院 南宁 530006
  • 收稿日期:2023-02-06 修回日期:2023-10-06 出版日期:2024-06-26 发布日期:2024-05-17
  • 通讯作者: *吴辉, Email:huiwumath168@163.com
  • 作者简介:韦华全, Email:weihuaquan@163.com;|刘晓冀, Email:xiaojiliu72@126.com;|靳宏伟, Email:hw-jin@hotmail.com
  • 基金资助:
    国家自然科学基金(12061011);广西自然科学基金(2020GXNSFDA238014);广西自然科学基金(2023JJA110104);广西高校中青年教师科研基础能力提升项目(2022KY0610);广西研究生教育创新计划资助项目(YCBZ2023021)

Properties and Computations of the $\mathfrak{m}$-WG Inverse

Wei Huaquan1(),Wu Hui1,*(),Liu Xiaoji2(),Jin Hongwei3()   

  1. 1. School of Mathematics and Information Science, Guangxi University, Nanning 530004
    2. School of Education, Guangxi Vocational Normal University, Nanning 530007
    3. School of Mathematics and Physics, Guangxi Minzu University, Nanning 530006
  • Received:2023-02-06 Revised:2023-10-06 Online:2024-06-26 Published:2024-05-17
  • Supported by:
    NSF of China(12061011);NSF of Guangxi(2020GXNSFDA238014);NSF of Guangxi(2023JJA110104);Basic Ability Improvement Project for Middle-Aged and Young Teachers of Universities in Guangxi(2022KY0610);Innovation Project of Guangxi Graduate Education(YCBZ2023021)

摘要:

该文研究了闵可夫斯基空间中矩阵的 $\mathfrak{m}$-WG 逆的性质和计算. 首先,利用值域和零空间给出了 $\mathfrak{m}$-WG 逆的刻画.其次, 给出了 $\mathfrak{m}$-WG 逆与非奇异加边矩阵之间的关系, 并讨论了 $\mathfrak{m}$-WG 逆的扰动界. 最后, 利用逐次矩阵平方算法给出了 $\mathfrak{m}$-WG 逆的计算.

关键词: $\mathfrak{m}$-WG 逆, 加边矩阵, 扰动界, 逐次矩阵平方算法

Abstract:

In this paper, the properties and computations of the $\mathfrak{m}$-WG inverse in Minskowski space are presented. Firstly, the characterization of the $\mathfrak{m}$-WG inverse is given by using the range and null space. Secondly, the relationship between the $\mathfrak{m}$-WG inverse and an invertible bordered matrix is given. Moreover, the perturbation bounds of the $\mathfrak{m}$-WG inverse is discussed. Finally, the successive matrix squaring algorithm is used to compute the $\mathfrak{m}$-WG inverse.

Key words: $\mathfrak{m}$-WG inverse, Bordered matrix, Perturbation bounds, Successive matrix squaring algorithm

中图分类号: 

  • O151.2