[1] |
Candès E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215
doi: 10.1109/TIT.2005.858979
|
[2] |
Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
doi: 10.1109/TIT.2006.871582
|
[3] |
Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509
doi: 10.1109/TIT.2005.862083
|
[4] |
Liu Y F, Wu Y C. Variable selection via a combination of the $L_0$ and $L_1$ penalties. Journal of Computational and Graphical Statistics, 2007, 16(4): 782-798
doi: 10.1198/106186007X255676
|
[5] |
Soubies E, Blanc-Féraud L, Aubert G. A continuous exact $l_0$ penalty($cel0$) for least squares regularized problem. SIAM Journal on Imaging Sciences, 2015, 8(3): 1607-1639
doi: 10.1137/151003714
|
[6] |
Bühlmann P, Kalisch M, Meier L. High-dimensional statistics with a view toward applications in biology. Annual Review of Statistics and Its Application, 2014, 1(1): 255-278
|
[7] |
Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2006, 68(1): 49-67
doi: 10.1111/j.1467-9868.2005.00532.x
|
[8] |
Huang J Z, Zhang T. The benefit of group sparsity. Annals of Statistics, 2010, 38(4): 1978-2004
|
[9] |
Jenatton R, Audibert J, Bach F, et al. Structured variable selection with sparsity-inducing norms. Journal of Machine Learning Research, 2011, 12: 2777-2824
|
[10] |
Pan L L, Xiu N H, Fan J. Optimality conditions for sparse nonlinear programming. Science China Mathematics, 2017, 60(5): 759-776
doi: 10.1007/s11425-016-9010-x
|
[11] |
Zhang H, Pan L L, Xiu N H. Optimality conditions for locally Lipschitz optimization with $l_0$-regularization. Optimization Letters, 2021, 15(1): 189-203
doi: 10.1007/s11590-020-01579-y
|
[12] |
Beck A, Eldar Y C. Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM Journal on Optimization, 2013, 23(3): 1480-1509
doi: 10.1137/120869778
|
[13] |
Pan L L, Xiu N H, Zhou S L. On solutions of sparsity constrained optimization. Journal of the Operations Research Society of China, 2015, 3(4): 421-439
doi: 10.1007/s40305-015-0101-3
|
[14] |
Pan L L, Xiu N H, Zhou S L, et al. A convergent iterative hard thresholding for sparsity and nonnegativity constrained optimization. Pacific Journal of Optimization, 2017, 13(2): 325-353
|
[15] |
Beck A, Hallak N. On the minimization over sparse symmetric sets: projections, optimality conditions, and algorithms. Mathematics of Operations Research, 2016, 41(1): 196-223
doi: 10.1287/moor.2015.0722
|
[16] |
Lu Z S. Optimization over sparse symmetric sets via a nonmonotone projected gradient method. arXiv: 1509.08581
|
[17] |
Beck A, Hallak N. Optimization problems involving group sparsity terms. Mathematical Programming, 2019, 178(1): 39-67
doi: 10.1007/s10107-018-1277-1
|
[18] |
Wu W Y, Peng D T. Optimality conditions for group sparse constrained optimization problems. Mathematics, 2021, 9(1): 1-17
doi: 10.3390/math9010001
|
[19] |
Peng D T, Chen X J. Computation of second-order directional stationary points for group sparse optimization. Optimization Methods and Software, 2020, 35(2): 348-376
doi: 10.1080/10556788.2019.1684492
|
[20] |
Pan L L, Chen X J. Group sparse optimization for images recovery using capped folded concave functions. SIAM Journal on Imaging Sciences, 2021, 14(1): 1-25
doi: 10.1137/19M1304799
|
[21] |
Li W J, Bian W, Toh K C. Difference-of-convex algorithms for a class of sparse group $l_0$ regularized optimization problems. SIAM Journal on Optimization, 2022, 32(3): 1614-1641
doi: 10.1137/21M1443455
|
[22] |
Rockafellar R T, Wets R J. Variational Analysis. Berlin: Springer, 2009
|