数学物理学报 ›› 2024, Vol. 44 ›› Issue (2): 396-416.

• • 上一篇    下一篇

带磁场多临界非局部椭圆问题的多解

温瑞江*(),杨健夫()   

  1. 江西师范大学数学与统计学院 南昌 330022
  • 收稿日期:2023-04-17 修回日期:2023-08-16 出版日期:2024-04-26 发布日期:2024-04-07
  • 通讯作者: * 温瑞江,Email:ruijiangwen@126.com
  • 作者简介:杨健夫,Email:jfyang200749@sina.com
  • 基金资助:
    国家自然科学基金(12171212)

Multiple Solutions for Multi-Critical Nonlocal Elliptic Problems with Magnetic Field

Wen Ruijiang*(),Yang Jianfu()   

  1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
  • Received:2023-04-17 Revised:2023-08-16 Online:2024-04-26 Published:2024-04-07
  • Supported by:
    NSFC(12171212)

摘要:

该文考虑下列带磁场的多临界非局部椭圆方程

{(iA(x))2u=λ|u|p2u+ks=1(Ω|u(y)|2s|xy|Nαsdy)|u|2s2uΩ,u=0Ω

多解的存在性, 其中 ΩRN 中带光滑边界的有界区域, N4, i 是虚数单位, 2s=N+αsN2, N-4<αs<N, s=1,2,,k (k2), λ>0 并且 2p<2=2NN2. 假定磁向量位势 A(x)=(A1(x),A2(x),,AN(x)) 取实值并且满足局部 Hölder 连续. 该文利用 Ljusternik-Schnirelman 理论证明了当 λ 较小时, 方程 (1.1) 至少有 catΩ(Ω) 个非平凡解.

关键词: 多临界椭圆问题, 磁位势, Ljusternik-Schnirelman 理论

Abstract:

In this paper, we consider the existence of multiple solutions of the following multi-critical nonlocal elliptic equations with magnetic field

{(iA(x))2u=λ|u|p2u+ks=1(Ω|u(y)|2s|xy|Nαsdy)|u|2s2uinΩ,u=0onΩ,

where Ω is bounded domain with smooth boundary in RN, N4, i is imaginary unit, 2s=N+αsN2 with N4<αs<N,s=1,2,,k (k2), λ>0 and 2p<2=2NN2. Suppose the magnetic vector potential A(x)=(A1(x),A2(x),,AN(x)) is real and local Hölder continuous, we show by the Ljusternik-Schnirelman theory that our problem has at least catΩ(Ω) nontrivial solutions for λ small.

Key words: Multi-critical elliptic problem, Magnetic potential, Ljusternik-Schnirelman theory

中图分类号: 

  • O175.29