[1] |
Alves C O, Figueiredo G M. Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field. Milan J Math, 2014, 82: 389-405
|
[2] |
Alves C O, Figueiredo G M, Yang M B. Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field. Asymptotic Analysis, 2016, 96: 135-159
|
[3] |
Arioli G, Szulkin A. A Semilinear Schrödinger equation in the presence of a magnetic field. Arch Rational Mech Anal, 2003, 170: 277-295
|
[4] |
Benci V, Cerami G. Positive solutions of some nonlinear elliptic problems in exterior domains. Arch Rational Mech Anal, 1987, 99: 283-300
|
[5] |
Benci V, Cerami G. The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch Rational Mech Anal, 1991, 114: 79-93
|
[6] |
Bueno H, Mamami G G, Pereira G A. Ground state of a magnetic nonlinear Choquard equation. Nonlinear Anal, 2019, 181: 189-199
|
[7] |
Cingolani S, Clapp M, Secchi S. Multiple solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63: 233-248
|
[8] |
Cingolani S, Secchi S, Squassina M. Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc Roy Soc Edinburgh A, 2010, 140: 973-1009
|
[9] |
Esteban M, Lions P L. Stationary solutions of nonlinear Schrödinger equations with an external magnetic field//Colombini F, Marino A, Modical L, et al. PDE and Calculus of Variations, Vol. I:Essays in honor of Ennio De Giorgi. Boston: Birkhäuser, 1989: 401-449
|
[10] |
Gao F S, Yang M B. On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci China Math, 2018, 61: 1219-1242
|
[11] |
Gao F S, Yang M B. On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents. J Math Anal Appl, 2017, 448: 1006-1041
|
[12] |
Ghimenti M, Pagliardini D. Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains. Calc Var Partial Differ Equ, 2019, 58: 1-21
doi: 10.1007/s00526-019-1562-8
|
[13] |
Goel D. The effect of topology on the number of positive solutions of elliptic equation involving Hardy-Littlewood-Sobolev critical exponent. Top Methods in Nonlinear Anal, 2019, 54: 751-771
|
[14] |
Ji C, Rădulescu V D. Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. J Differential Equations, 2022, 306: 251-279
|
[15] |
Lieb E H. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Studies in Appl Math, 1976/77, 57: 93-105
|
[16] |
Lieb E H, Loss M. Analysis. Providence, RI: Amer Math Soc, 1997
|
[17] |
Lions P L, The Choquard equation and related questions. Nonlinear Anal, 1980, 4: 1063-1072
|
[18] |
Liu F Q, Yang J F, Yu X H. Positive solutions to multi-critical elliptic problems. Ann di Mate Pura ed Appl, 2023, 202: 851-875
|
[19] |
Lü D F. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Commun Pure Appl Anal, 2016, 15: 1781-1795
|
[20] |
Miyagaki O H. On a class of semilinear elliptic problems in $R^N$ with critical growth. Nonlinear Anal, 1997, 29: 773-781
|
[21] |
Moroz V, Schaftingen J Van. Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265: 153-184
|
[22] |
Moroz V, Schaftingen J Van. Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Comm Contem Math, 2015, 17: 1550005
doi: 10.1142/S0219199715500054
|
[23] |
Mukherjee T, Sreenadh K. On concentration of least energy solutions for magnetic critical Choquard equations. J Math Anal Appl, 2018, 464: 402-420
|
[24] |
Salazar D. Vortex-type solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2015, 66: 663-675
|
[25] |
Tang Z W, Wang Y L. Least energy solutions for semilinear Schrödinger equation with electromagnetic fields and critical growth. Science China Mathematics, 2015, 58: 2317-2328
|
[26] |
Wen R J, Yang J F, Yu X H. Multiple solutions for critical nonlocal elliptic problems with magnetic field. Discrete and Continuous Dynamical Systems-S, 2023, 17(2): 530-546
doi: 10.3934/dcdss.2023030
|
[27] |
Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, 24, Boston MA:Birkhäuser Boston Inc, 1996
|
[28] |
Xu Z Y, Yang J F. Multiple solutions to multi-critical Schrödinger equations. Advanced Nonlinear Studies, 2022, 22: 273-288
|
[29] |
Yang M B, Wei Y H. Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities. J Math Anal Appl, 2013, 403: 680-694
|