数学物理学报 ›› 2024, Vol. 44 ›› Issue (2): 396-416.

• • 上一篇    下一篇

带磁场多临界非局部椭圆问题的多解

温瑞江*(),杨健夫()   

  1. 江西师范大学数学与统计学院 南昌 330022
  • 收稿日期:2023-04-17 修回日期:2023-08-16 出版日期:2024-04-26 发布日期:2024-04-07
  • 通讯作者: * 温瑞江,Email:ruijiangwen@126.com
  • 作者简介:杨健夫,Email:jfyang200749@sina.com
  • 基金资助:
    国家自然科学基金(12171212)

Multiple Solutions for Multi-Critical Nonlocal Elliptic Problems with Magnetic Field

Wen Ruijiang*(),Yang Jianfu()   

  1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
  • Received:2023-04-17 Revised:2023-08-16 Online:2024-04-26 Published:2024-04-07
  • Supported by:
    NSFC(12171212)

摘要:

该文考虑下列带磁场的多临界非局部椭圆方程

$ \left\{\begin{aligned}(-{\rm i}\nabla-A(x))^2u&=\lambda|u|^{p-2}u+\sum\limits^k_{s=1}\Big(\int_{\Omega}\frac{|u(y)|^{2^*_s}}{|x-y|^{N-\alpha_s}} {\rm d}y\Big)|u|^{2^*_s-2}u\quad \text{在} \Omega \text{中},\\u&=0\quad \text{在} \partial\Omega \text{上}\\\end{aligned}\right.$

多解的存在性, 其中 $\Omega$ 是 $\mathbb{R}^N$ 中带光滑边界的有界区域, $N\geq4$, $i$ 是虚数单位, $2^*_s=\frac{N+\alpha_s}{N-2}$, $N$-4<$\alpha_s$<$N$, $s=1,2$,$\cdots,k$ $(k\geq 2)$, $\lambda$>0 并且 $2\leq p$<$2^*=\frac{2N}{N-2}$. 假定磁向量位势 $A(x)= (A_1(x), A_2(x), \cdots, A_N(x))$ 取实值并且满足局部 Hölder 连续. 该文利用 Ljusternik-Schnirelman 理论证明了当 $\lambda$ 较小时, 方程 (1.1) 至少有 cat$_\Omega(\Omega)$ 个非平凡解.

关键词: 多临界椭圆问题, 磁位势, Ljusternik-Schnirelman 理论

Abstract:

In this paper, we consider the existence of multiple solutions of the following multi-critical nonlocal elliptic equations with magnetic field

$\left\{\begin{aligned}(-{\rm i}\nabla-A(x))^2u&=\lambda |u|^{p-2}u+\sum\limits^k_{s=1}\Big(\int_{\Omega}\frac{|u(y)|^{2^*_s}}{|x-y|^{N-\alpha_s}} {\rm d}y\Big)|u|^{2^*_s-2}u\quad {\rm in}\quad \Omega,\\u&=0\quad {\rm on}\quad \partial\Omega,\\\end{aligned}\right.$

where $\Omega$ is bounded domain with smooth boundary in $\mathbb{R}^N$, $N\geq4$, i is imaginary unit, $2^*_s=\frac{N+\alpha_s}{N-2}$ with $N-4$<$\alpha_s$<$N, s=1,2,\cdots,k$ $(k\geq2)$, $\lambda$>0 and $2\leq p$<$2^*=\frac{2N}{N-2}$. Suppose the magnetic vector potential $A(x)= (A_1(x), A_2(x),\cdots, A_N(x))$ is real and local Hölder continuous, we show by the Ljusternik-Schnirelman theory that our problem has at least ${\rm cat}_\Omega(\Omega)$ nontrivial solutions for $\lambda$ small.

Key words: Multi-critical elliptic problem, Magnetic potential, Ljusternik-Schnirelman theory

中图分类号: 

  • O175.29