数学物理学报 ›› 2024, Vol. 44 ›› Issue (2): 396-416.
收稿日期:
2023-04-17
修回日期:
2023-08-16
出版日期:
2024-04-26
发布日期:
2024-04-07
通讯作者:
* 温瑞江,Email:作者简介:
杨健夫,Email:基金资助:
Received:
2023-04-17
Revised:
2023-08-16
Online:
2024-04-26
Published:
2024-04-07
Supported by:
摘要:
该文考虑下列带磁场的多临界非局部椭圆方程
多解的存在性, 其中
中图分类号:
温瑞江, 杨健夫. 带磁场多临界非局部椭圆问题的多解[J]. 数学物理学报, 2024, 44(2): 396-416.
Wen Ruijiang, Yang Jianfu. Multiple Solutions for Multi-Critical Nonlocal Elliptic Problems with Magnetic Field[J]. Acta mathematica scientia,Series A, 2024, 44(2): 396-416.
[1] | Alves C O, Figueiredo G M. Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field. Milan J Math, 2014, 82: 389-405 |
[2] | Alves C O, Figueiredo G M, Yang M B. Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field. Asymptotic Analysis, 2016, 96: 135-159 |
[3] | Arioli G, Szulkin A. A Semilinear Schrödinger equation in the presence of a magnetic field. Arch Rational Mech Anal, 2003, 170: 277-295 |
[4] | Benci V, Cerami G. Positive solutions of some nonlinear elliptic problems in exterior domains. Arch Rational Mech Anal, 1987, 99: 283-300 |
[5] | Benci V, Cerami G. The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch Rational Mech Anal, 1991, 114: 79-93 |
[6] | Bueno H, Mamami G G, Pereira G A. Ground state of a magnetic nonlinear Choquard equation. Nonlinear Anal, 2019, 181: 189-199 |
[7] | Cingolani S, Clapp M, Secchi S. Multiple solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63: 233-248 |
[8] | Cingolani S, Secchi S, Squassina M. Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc Roy Soc Edinburgh A, 2010, 140: 973-1009 |
[9] | Esteban M, Lions P L. Stationary solutions of nonlinear Schrödinger equations with an external magnetic field//Colombini F, Marino A, Modical L, et al. PDE and Calculus of Variations, Vol. I:Essays in honor of Ennio De Giorgi. Boston: Birkhäuser, 1989: 401-449 |
[10] | Gao F S, Yang M B. On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci China Math, 2018, 61: 1219-1242 |
[11] | Gao F S, Yang M B. On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents. J Math Anal Appl, 2017, 448: 1006-1041 |
[12] |
Ghimenti M, Pagliardini D. Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains. Calc Var Partial Differ Equ, 2019, 58: 1-21
doi: 10.1007/s00526-019-1562-8 |
[13] | Goel D. The effect of topology on the number of positive solutions of elliptic equation involving Hardy-Littlewood-Sobolev critical exponent. Top Methods in Nonlinear Anal, 2019, 54: 751-771 |
[14] | Ji C, Rădulescu V D. Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well. J Differential Equations, 2022, 306: 251-279 |
[15] | Lieb E H. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Studies in Appl Math, 1976/77, 57: 93-105 |
[16] | Lieb E H, Loss M. Analysis. Providence, RI: Amer Math Soc, 1997 |
[17] | Lions P L, The Choquard equation and related questions. Nonlinear Anal, 1980, 4: 1063-1072 |
[18] | Liu F Q, Yang J F, Yu X H. Positive solutions to multi-critical elliptic problems. Ann di Mate Pura ed Appl, 2023, 202: 851-875 |
[19] | Lü D F. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Commun Pure Appl Anal, 2016, 15: 1781-1795 |
[20] |
Miyagaki O H. On a class of semilinear elliptic problems in ![]() ![]() |
[21] | Moroz V, Schaftingen J Van. Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265: 153-184 |
[22] |
Moroz V, Schaftingen J Van. Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Comm Contem Math, 2015, 17: 1550005
doi: 10.1142/S0219199715500054 |
[23] | Mukherjee T, Sreenadh K. On concentration of least energy solutions for magnetic critical Choquard equations. J Math Anal Appl, 2018, 464: 402-420 |
[24] | Salazar D. Vortex-type solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2015, 66: 663-675 |
[25] | Tang Z W, Wang Y L. Least energy solutions for semilinear Schrödinger equation with electromagnetic fields and critical growth. Science China Mathematics, 2015, 58: 2317-2328 |
[26] |
Wen R J, Yang J F, Yu X H. Multiple solutions for critical nonlocal elliptic problems with magnetic field. Discrete and Continuous Dynamical Systems-S, 2023, 17(2): 530-546
doi: 10.3934/dcdss.2023030 |
[27] | Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, 24, Boston MA:Birkhäuser Boston Inc, 1996 |
[28] | Xu Z Y, Yang J F. Multiple solutions to multi-critical Schrödinger equations. Advanced Nonlinear Studies, 2022, 22: 273-288 |
[29] | Yang M B, Wei Y H. Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities. J Math Anal Appl, 2013, 403: 680-694 |
[1] | 何芬, 王振. 一类双曲椭圆混合型趋化模型的黎曼问题[J]. 数学物理学报, 2024, 44(2): 354-360. |
[2] | 汪璇, 袁海燕. 具有时间依赖记忆核的非经典扩散方程的吸引子[J]. 数学物理学报, 2024, 44(2): 429-452. |
[3] | 李远飞, 李丹丹, 石金诚. 温度相关双扩散模型在半无穷柱体上的结构稳定性[J]. 数学物理学报, 2024, 44(1): 120-132. |
[4] | 沈旭辉,丁俊堂. 具有梯度源项和非线性边界条件的多孔介质方程组解的爆破[J]. 数学物理学报, 2023, 43(5): 1417-1426. |
[5] | 归坤明,陶虹杉,杨俊. 含混合项的拟线性Schrödinger方程的正规化基态解[J]. 数学物理学报, 2023, 43(4): 1062-1072. |
[6] | 陈敏,胡碧艳,罗宏. 二维不可压缩 Navier-Stokes-Allen-Cahn 系统的边界层分离[J]. 数学物理学报, 2023, 43(4): 1123-1132. |
[7] | 蔡森林,周寿明,陈容. 大振幅浅水波模型的柯西问题研究[J]. 数学物理学报, 2023, 43(4): 1197-1120. |
[8] | 张金玉,王丹,耿勇,杨苗苗,王晓丽. 一类(1+1)维变系数复方程的可积性研究[J]. 数学物理学报, 2023, 43(4): 994-1002. |
[9] | 邹永辉,徐鑫. 二维可压缩Prandtl方程倒流点的存在性[J]. 数学物理学报, 2023, 43(3): 691-701. |
[10] | 李敏, 蒲学科. 双流体 Euler-Poisson 方程的长波长极限[J]. 数学物理学报, 2023, 43(2): 399-420. |
[11] | 康笑东, 范虹霞. 一类具有瞬时脉冲的二阶发展方程的近似可控性[J]. 数学物理学报, 2023, 43(2): 421-432. |
[12] | 曾彪. 一类带有弱连续算子的发展方程的最优控制[J]. 数学物理学报, 2023, 43(2): 515-530. |
[13] | 陈雪姣, 李远飞, 侯春娟. 半无穷柱体上Forchheimer方程组解的Phragmén-Lindelöf型二择一结果[J]. 数学物理学报, 2023, 43(2): 505-514. |
[14] | 杜保营,刘金兴. 部分耗散的三维不可压Hall-MHD方程组的整体正则性[J]. 数学物理学报, 2022, 42(6): 1754-1767. |
[15] | 苏晓,王书彬. 四阶p-广义Benney-Luke方程的初值问题[J]. 数学物理学报, 2022, 42(6): 1744-1753. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 68
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|