数学物理学报 ›› 2024, Vol. 44 ›› Issue (1): 37-49.
收稿日期:
2022-09-06
修回日期:
2023-08-25
出版日期:
2024-02-26
发布日期:
2024-01-10
通讯作者:
安静, E-mail:aj154@163.com
作者简介:
何娅, E-mail:基金资助:
Received:
2022-09-06
Revised:
2023-08-25
Online:
2024-02-26
Published:
2024-01-10
Supported by:
摘要:
文章提出了周期边界条件下四阶特征值问题的一种有效的 Fourier 谱逼近方法. 首先, 根据周期边界条件引入了适当的 Sobolev 空间和相应的逼近空间, 建立了原问题的一种弱形式及其离散格式, 并推导了等价的算子形式. 其次, 定义了正交投影算子, 并证明了其逼近性质, 结合紧算子的谱理论证明了逼近特征值的误差估计. 另外, 构造了逼近空间中的一组基函数, 推导了离散格式基于张量积的矩阵形式. 最后, 文章给出了一些数值算例, 数值结果表明其算法是有效的和谱精度的.
中图分类号:
何娅, 安静. 周期边界条件下四阶特征值问题的一种有效的 Fourier 谱逼近[J]. 数学物理学报, 2024, 44(1): 37-49.
He Ya, An Jing. An Effective Fourier Spectral Approximation for Fourth-Order Eigenvalue Problems with Periodic Boundary Conditions[J]. Acta mathematica scientia,Series A, 2024, 44(1): 37-49.
[1] |
An J, Li H Y, Zhang Z M. Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains. Numerical Algorithms, 2020, 84(2): 427-455
doi: 10.1007/s11075-019-00760-4 |
[2] |
An J, Luo Z D. A high accuracy spectral method based on min/max principle for biharmonic eigenvalue problems on a spherical domain. Journal of Mathematical Analysis and Applications, 2016, 439(1): 385-395
doi: 10.1016/j.jmaa.2016.02.048 |
[3] |
An J, Shen J. A Spectral-Element method for transmission eigenvalue problems. Journal of Scientific Computing, 2013, 57(3): 670-688
doi: 10.1007/s10915-013-9720-1 |
[4] | An J. A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues. Applied Numerical Mathematics, 2016, 108: 171-184 |
[5] | BABU Š KA I, Osborn J. Eigenvalue problems. Handbook of Numerical Analysis, 1991, 2: 641-787 |
[6] |
Banerjee U, Osborn J E. Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numerische Mathematik, 1989, 56(8): 735-762
doi: 10.1007/BF01405286 |
[7] |
Boffi D. Finite element approximation of eigenvalue problems. Acta Numerica, 2010, 19: 1-120
doi: 10.1017/S0962492910000012 |
[8] |
Chen L Z, An J, Zhuang Q Q. Direct solvers for the biharmonic eigenvalue problems using Legendre polynomials. Journal of Scientific Computing, 2017, 70(3): 1030-1041
doi: 10.1007/s10915-016-0277-7 |
[9] | Chen L Z, Shen J, Xu C J. A triangular spectral method for the Stokes equations. Numerical Mathematics: Theory, Methods and Applications, 2011, 4(2): 158-179 |
[10] |
Dubiner M. Spectral methods on triangles and other domains. Journal of Scientific Computing, 1991, 6(4): 345-390
doi: 10.1007/BF01060030 |
[11] |
Fu H F, Rui H X, Hou J, et al. A stabilized mixed finite element method for elliptic optimal control problems. Journal of Scientific Computing, 2016, 66(3): 968-986
doi: 10.1007/s10915-015-0050-3 |
[12] |
Ge Y X, Tan T, An J. A high accuracy numerical method and error analysis for fourth order elliptic eigenvalue problems in circular domain. Advances in Applied Mathematics and Mechanics, 2020, 12(3): 815-834
doi: 10.4208/aamm |
[13] |
Grebenkov D S, Nguyen B T. Geometrical structure of Laplacian eigenfunctions. SIAM Review, 2013, 55(4): 601-667
doi: 10.1137/120880173 |
[14] | Griffin A, Snoke D W, Stringari S. Bose-Einstein Condensation. Cambridge University Press, 1996 |
[15] |
Kuttler J R. A finite-difference approximation for the eigenvalues of the clamped plate. Numerische Mathematik, 1971, 17(3): 230-238
doi: 10.1007/BF01436379 |
[16] |
Lamichhane B P. A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems. Journal of Computational and Applied Mathematics, 2011, 235(17): 5188-5197
doi: 10.1016/j.cam.2011.05.005 |
[17] |
Mercier B, Osborn J, Rappaz J, et al. Eigenvalue approximation by mixed and hybrid methods. Mathematics of Computation, 1981, 36(154): 427-453
doi: 10.1090/mcom/1981-36-154 |
[18] |
Neese F. Prediction of electron paramagnetic resonance![]() |
[19] |
Pasquetti R, Rapetti F. Spectral element methods on unstructured meshes: Comparisons and recent advances. Journal of Scientific Computing, 2006, 27(1): 377-387
doi: 10.1007/s10915-005-9048-6 |
[20] |
Rannacher R. Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numerische Mathematik, 1979, 33(1): 23-42
doi: 10.1007/BF01396493 |
[21] |
Shen J, Wang L L, Li H Y. A triangular spectral element method using fully tensorial rational basis functions. SIAM Journal on Numerical Analysis, 2009, 47(3): 1619-1650
doi: 10.1137/070702023 |
[22] |
Sherwin S J, Karniadakis G E. A triangular spectral element method: Applications to the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 1995, 123(1-4): 189-229
doi: 10.1016/0045-7825(94)00745-9 |
[23] |
Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 2009, 102(7): 073005
doi: 10.1103/PhysRevLett.102.073005 |
[1] | 牛翠霞,马和平. 非线性非一致介质二维Maxwell方程leap-frog Crank-Nicolson多区域Legendre-tau配置谱方法[J]. 数学物理学报, 2023, 43(3): 808-828. |
[2] | 杨帆, 曹英, 李晓晓. 时空分数阶扩散波动方程的初值识别问题[J]. 数学物理学报, 2023, 43(2): 377-398. |
[3] | 王克彦,王奇生. 一类非线性双曲型方程扩展混合有限元方法的误差估计[J]. 数学物理学报, 2021, 41(2): 468-478. |
[4] | 杨朝强. 一类特殊混合跳扩散Black-Scholes模型的欧式回望期权定价[J]. 数学物理学报, 2019, 39(6): 1514-1531. |
[5] | 葛志昊, 曹济伟. 反应扩散问题的新的绝对稳定hp间断Galerkin方法[J]. 数学物理学报, 2018, 38(2): 385-394. |
[6] | 方志朝, 李宏, 罗振东, 刘洋. Sine-Gordon方程的混合有限体积元方法及数值模拟[J]. 数学物理学报, 2018, 38(2): 395-416. |
[7] | 陈传军, 张晓艳, 赵鑫. 一维非线性抛物问题两层网格有限体积元逼近[J]. 数学物理学报, 2017, 37(5): 962-975. |
[8] | 杨帆, 傅初黎, 李晓晓, 任玉鹏. 一类非线性反向热传导问题的Fourier正则化方法[J]. 数学物理学报, 2017, 37(1): 62-71. |
[9] | 陈传军, 赵鑫. 一类非线性对流扩散方程两重网格特征有限元方法及误差估计[J]. 数学物理学报, 2014, 34(3): 643-654. |
[10] | 石东洋, 于志云. 带有阻尼项的定常Stokes方程的低阶非协调混合有限元方法的超逼近和超收敛分析[J]. 数学物理学报, 2013, 33(4): 735-745. |
[11] | 方志朝, 李宏, 罗振东. 伪双曲型方程的混合控制体积方法[J]. 数学物理学报, 2013, 33(3): 535-550. |
[12] | 李磊, 孙萍, 罗振东. 抛物方程一种新混合有限元格式及误差分析[J]. 数学物理学报, 2012, 32(6): 1158-1165. |
[13] | 何斯日古楞, 李宏. 弹性动力学问题的混合间断时空有限元法[J]. 数学物理学报, 2012, 32(6): 1179-1190. |
[14] | 石东洋, 裴丽芳, 许超. 双负介质中电磁波传播的各向异性非协调有限元分析[J]. 数学物理学报, 2012, 32(5): 982-995. |
[15] | 芮洪兴, 廉西猛. 抛物问题间断Galerkin区域分解方法[J]. 数学物理学报, 2012, 32(5): 928-940. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 204
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|