数学物理学报 ›› 2024, Vol. 44 ›› Issue (1): 195-208.
收稿日期:
2022-06-09
修回日期:
2023-08-16
出版日期:
2024-02-26
发布日期:
2024-01-10
通讯作者:
彭建文, E-mail:jwpeng168@hotmail.com
作者简介:
陈建华, E-mail:基金资助:
Received:
2022-06-09
Revised:
2023-08-16
Online:
2024-02-26
Published:
2024-01-10
Supported by:
摘要:
Wang 等提出了求解带线性约束的多块可分非凸优化问题的带 Bregman 距离的交替方向乘子法 (Bregman ADMM), 并证明了其收敛性. 该文将进一步研究求解带线性约束的多块可分非凸优化问题的 Bregman ADMM 的收敛率, 以及算法产生的迭代点列有界的充分条件. 在效益函数的 Kurdyka-Łojasiewicz (KŁ) 性质下, 该文建立了值和迭代的收敛速率, 证明了与目标函数相关的各种 KŁ 指数值可获得 Bregman ADMM 的三种不同收敛速度. 更确切地说, 该文证明了如下结果:如果效益函数的 KŁ 指数$\theta=0$, 那么由 Bregman ADMM 生成的序列经过有限次迭代后收敛; 如果$\theta \in \left (0, \frac{1}{2}\right ]$, 那么Bregman ADMM是线性收敛的;如果$\theta \in \left ( \frac{1}{2}, 1\right )$, 那么 Bregman ADMM 是次线性收敛的.
中图分类号:
陈建华, 彭建文. 非凸多分块优化的 Bregman ADMM 的收敛率研究[J]. 数学物理学报, 2024, 44(1): 195-208.
Chen Jianhua, Peng Jianwen. Research on the Convergence Rate of Bregman ADMM for Nonconvex Multiblock Optimization[J]. Acta mathematica scientia,Series A, 2024, 44(1): 195-208.
[1] |
Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 2011, 3: 1-122
doi: 10.1561/2200000016 |
[2] | Glowinski R, Marroco A. Sur l'approximation, paréléments finis d'ordre un, et la résolution, par pénalisation-dualitéd'une classe de problèmes de Dirichlet non linéaires. Journal of Equine Veterinary Science, 1975, 2: 41-76 |
[3] |
Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers and Mathematics with Applications, 1976, 2: 17-40
doi: 10.1016/0898-1221(76)90003-1 |
[4] | Bertsekas D, Tsitsiklis J. Numerical Methods for Nonlinear Variational Problems. Berlin: Springer Series in Computational Physics, Springer, 1984 |
[5] | 何炳生. 乘子交替方向法的一些收敛性质. 高等学校计算数学学报, 2017, 39: 81-96 |
He B S. Some convergence properties of the alternating direction method of multipliers. Numerical Mathematics A Journal of Chinese Universities, 2017, 39: 81-96 | |
[6] |
Yang W H, Han D R. Linear Convergence of the alternating direction method of multipliers for a class of convex optimization problems. SIAM Journal on Numerical Analysis, 2016, 54: 625-640
doi: 10.1137/140974237 |
[7] |
He B S, Ma F, Yuan X M. Convergence study on the symmetric version of ADMM with larger step sizes. SIAM Journal on Imaging Sciences, 2016, 9: 1467-1501
doi: 10.1137/15M1044448 |
[8] |
Fazel M, Pong T K, Sun D F, et al. Hankel matrix rank minimization with applications to system identification and realization. SIAM Journal on Matrix Analysis and Applications, 2013, 34: 946-977
doi: 10.1137/110853996 |
[9] |
Li M, Sun D F, Toh K C. A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization. SIAM Journal on Optimization, 2016, 26: 922-950
doi: 10.1137/140999025 |
[10] |
Zhang L, Wu J, Zhang L W. A linearly convergent majorized ADMM with indefinite proximal terms for convex composite programming and its applications. Mathematics of Computation, 2020, 89(324): 1867-1894
doi: 10.1090/mcom/2020-89-324 |
[11] | Wang H H, Banerjee A. Bregman alternating direction method of multipliers. Arxiv: 1306.3203v3, 2014 |
[12] | Wang F, Xu Z B, Xu H K. Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems. https://arXiv preprint arXiv: 1410.8625, 2014 |
[13] |
Guo K, Han D R, Wu T T. Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. International Journal of Computer Mathematics, 2017, 94: 1653-1669
doi: 10.1080/00207160.2016.1227432 |
[14] |
Wu Z M, Li M, Wang D, et al. A symmetric alternating direction method of multipliers for separable nonconvex minimization problems. Asia Pacific Journal of Operation Research, 2017, 34(06): 1750030
doi: 10.1142/S0217595917500300 |
[15] |
Jian J B, Zhang Y, Chao M T. A regularized alternating direction method of multiplier for a class of nonconvex problems. Journal of Inequalities and Applications, 2019, 2019: 1-16
doi: 10.1186/s13660-019-1955-4 |
[16] |
Jia Z H, Gao X, Cai X J, et al. Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization problems. Journal of Optimization Theory and Applications, 2021, 188: 1-25
doi: 10.1007/s10957-020-01782-y |
[17] |
Chen C H, He B S, Ye Y Y, et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Mathematical Programming, 2016, 155: 57-79
doi: 10.1007/s10107-014-0826-5 |
[18] |
Han D R, Yuan X M. A note on the alternating direction method of multipliers. Journal of Optimization Theory and Applications, 2012, 155: 227-238
doi: 10.1007/s10957-012-0003-z |
[19] |
Lin T Y, Ma S Q, Zhang S Z. Global convergence of unmodified 3-block ADMM for a class of convex minimization problems. Journal of Scientific Computing, 2018, 76: 69-88
doi: 10.1007/s10915-017-0612-7 |
[20] |
He B S. Parallel splitting augmented lagrangian methods for monotone structured variational inequalities. Computational Optimization and Applications, 2009, 42: 195-212
doi: 10.1007/s10589-007-9109-x |
[21] |
He B S, Tao M, Yuan X M. Alternating direction method with Gaussian back substitution for separable convex programming. SIAM Journal on Optimization, 2012, 22: 313-340
doi: 10.1137/110822347 |
[22] |
Chen L, Li X D, Sun D F, et al. On the equivalence of inexact proximal ALM and ADMM for a class of convex composite programming. Mathematical Programming, 2021, 185: 111-161
doi: 10.1007/s10107-019-01423-x |
[23] |
Deng W, Lai M J, Peng Z M, et al. Parallel multi-block ADMM with$o(1/k)$convergence. Journal of Scientific Computing, 2017, 71 : 712-736
doi: 10.1007/s10915-016-0318-2 |
[24] |
Hong M Y, Luo Z Q, Razaviyayn M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM Journal on Optimization, 2016, 26: 337-364
doi: 10.1137/140990309 |
[25] |
Guo K, Han D R, David W W, et al. Convergence of ADMM for multi-block nonconvex separable optimization mobels. Front. Math. China, 2017, 12: 1139-1162
doi: 10.1007/s11464-017-0631-6 |
[26] |
Jiang B, Lin T Y, Ma S Q, et al. Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis. Computational Optimization and Applications, 2019, 72: 115-157
doi: 10.1007/s10589-018-0034-y |
[27] |
Yashtinin M. Multi-block nonconvex nonsmooth proximal ADMM: Convergence and rates under Kurdyka-Łojasiewicz property. Journal of Optimization Theory and Applications, 2021, 190: 966-998
doi: 10.1007/s10957-021-01919-7 |
[28] | 简金宝, 刘鹏杰, 江羡珍. 非凸多分块优化部分对称正则化交替方向乘子法. 数学学报, 2021, 64A(6): 1005-1026 |
Jian J B, Liu P J, Jiang X Z. A partially symmetric regularized alternating direction method of multipliers for nonconvex Multi-block optimization. Acta Mathematica Sinica (Chinese Series), 2021, 64A(6): 1005-1026 | |
[29] | Wang F H, Cao W F, Xu Z B. Convergence of multi-block Bregman ADMM for nonconvex problems. Science China Information Sciences, 2018, 61: 1-12 |
[30] |
Frankel P, Garrigos G, Peypouquet J. Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates. Journal of Optimization Theory and Applications, 2015, 165: 874-900
doi: 10.1007/s10957-014-0642-3 |
[31] | Rockafellar R T, Wets R J B. Variational Analysis. Berlin: Springer Science and Business Media, 2009 |
[32] |
Attouch H, Bolte J, Svaiter B F. Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Mathematical Programming, 2013, 137: 91-129
doi: 10.1007/s10107-011-0484-9 |
[33] |
Si S, Tao D C, Geng B. Bregman divergence-based regularization for transfer subspace learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22: 929-942
doi: 10.1109/TKDE.2009.126 |
[34] |
Xu Z B, Chang X Y, Xu F M, et al. $L_{1/2}$regularization: a thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning systems, 2012, 23: 1013-1027
doi: 10.1109/TNNLS.2012.2197412 |
[35] |
Bolte J, Daniilidis A, Lewis A. $L_{1/2}$The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization, 2007, 17: 1205-1223
doi: 10.1137/050644641 |
[1] | 陈洪欣,张学军,周敏. |
[2] | 刘富勤, 彭建文, 罗洪林. 具有线性化技术的三块非凸不可分优化问题Bregman ADMM收敛性分析[J]. 数学物理学报, 2023, 43(1): 291-304. |
[3] | 郭雨婷,张学军. 正规权一般函数空间到Bloch型空间的复合算子[J]. 数学物理学报, 2022, 42(5): 1306-1319. |
[4] | 贾哲,杨作东. 带非线性扩散项和信号产生项的趋化-趋触模型解的整体有界性[J]. 数学物理学报, 2021, 41(5): 1382-1395. |
[5] | 王娟,赵杰. 振荡Robin混合边值齐次化问题[J]. 数学物理学报, 2021, 41(1): 81-90. |
[6] | 唐鹏程,徐思,张学军. Cn中对数权一般函数空间上的Bergman型算子[J]. 数学物理学报, 2020, 40(5): 1151-1162. |
[7] | 王娟,赵杰. 高阶方程混合边界齐次化问题[J]. 数学物理学报, 2020, 40(4): 925-933. |
[8] | 赵艳辉,吴修云,廖春艳. 单位球上加权Bergman空间到Ƶμ型空间的加权Cesàro算子[J]. 数学物理学报, 2020, 40(3): 569-578. |
[9] | 韩瑶瑶,赵凯. Marcinkiewicz积分算子及其交换子在非齐度量测度空间上的有界性[J]. 数学物理学报, 2020, 40(3): 597-610. |
[10] | 徐思,张学军. 单位球上正规权Zygmund空间上的加权复合算子[J]. 数学物理学报, 2020, 40(2): 288-303. |
[11] | 王娟,赵杰. Neumann边值齐次化问题:W1, p强收敛估计[J]. 数学物理学报, 2019, 39(5): 1115-1124. |
[12] | 郭雨婷,尚清丽,张学军. 单位球上正规权Zygmund空间上的点乘子[J]. 数学物理学报, 2018, 38(6): 1041-1048. |
[13] | 王晚生, 钟鹏, 赵新阳. 非线性中立型变延迟微分方程的长时间稳定性[J]. 数学物理学报, 2018, 38(1): 96-109. |
[14] | 高红亚, 贾苗苗. 障碍问题解的局部正则性和局部有界性[J]. 数学物理学报, 2017, 37(4): 706-713. |
[15] | 赵艳辉, 张学军. 单位球上Dirichlet型空间到Zμ型空间的积分型算子[J]. 数学物理学报, 2017, 37(2): 217-227. |
|