[1] |
Ben-Tal A, Nemirovski A. Robust optimization-methodology and applications. Math Program, 2002, 92: 453-480
doi: 10.1007/s101070100286
|
[2] |
Ben-Tal A, EI Ghaoui L, Nemirovski A. Robust Optimization. Princeton: Princeton university press, 2009.
|
[3] |
Goberna M A, Jeyakumar V, Li G, López M A. Robust linear semi-infinite programming duality under uncertainty. Math Program, 2013, 139: 185-203
doi: 10.1007/s10107-013-0668-6
|
[4] |
Sun X, Tang L, Zeng J. Characterizations of approximate duality and saddle point theorems for nonsmooth robust vector optimization. Numer Funct Anal Optim, 2020, 41: 462-482
doi: 10.1080/01630563.2019.1660891
|
[5] |
叶冬平, 方东辉. 鲁棒复合优化问题的 Lagrange 对偶. 数学物理学报, 2020, 40A(4): 1095-1107
|
|
Ye D P, Fang D H. Lagrange duality of robust composite optimization problems. Acta Math Sci, 2020, 40A(4): 1095-1107
|
[6] |
Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A. Adjustable robust solutions of uncertain linear programs. Math Program, 2004, 99: 351-376
doi: 10.1007/s10107-003-0454-y
|
[7] |
Delage E, Iancu D A. Robust multistage decision making. Informs Tutor Oper Res, 2015, 2: 20-46
|
[8] |
Ruiter F, Ben-Tal A, Brekelmans R, Hertog D. Robust optimization of uncertain multistage inventory systems with inexact data in decision rules. Comput Manag Sci, 2017, 14: 45-66
doi: 10.1007/s10287-016-0253-6
|
[9] |
Zhen J, Hertog D D, Sim M. Adjustable robust optimization via Fourier-Motzkin elimination. Oper Res, 2018, 66: 1086-1100
doi: 10.1287/opre.2017.1714
|
[10] |
Jeyakumar V, Li G, Woolnough D. Quadratically adjustable robust linear optimization with inexact data via generalized S-lemma: Exact second-order cone program reformulations. EURO J Comput Optim, 2021, 9: 100019
doi: 10.1016/j.ejco.2021.100019
|
[11] |
Chuong T D, Jeyakumar V, Li G, Woolnough D. Exact SDP reformulations of adjustable robust linear programs with box uncertainties under separable quadratic decision rules via SOS representations of non-negativity. J Global Optim, 2021, 81: 1095-1117
doi: 10.1007/s10898-021-01050-x
|
[12] |
Woolnough D, Jeyakumar V, Li G. Exact conic programming reformulations of two-stage adjustable robust linear programs with new quadratic decision rules. Optim Lett, 2021, 15: 25-44
doi: 10.1007/s11590-020-01595-y
|
[13] |
Chuong T D, Jeyakumar V. Adjustable robust multiobjective linear optimization: Pareto optimal solutions via conic programming. Ann Oper Res, 2022. https://doi.org/10.1007/s10479-022-05104-5
|
[14] |
Chuong T D, Jeyakumar V, Li G, Woolnough D. Exact dual semi-definite programs for affinely adjustable robust SOS-convex polynomial optimization problems. Optimization, 2022, 71: 3539-3569
doi: 10.1080/02331934.2021.1902521
|
[15] |
de Ruiter F J C T, Zhen J, den Hertog D. Dual approach for two-stage robust nonlinear optimization. Oper Res, 2023, 71: 1794-1799
doi: 10.1287/opre.2022.2289
|
[16] |
Ramana M, Goldman A J. Some geometric results in semidefinite programming. J Global Optim, 1995, 7: 33-50
doi: 10.1007/BF01100204
|
[17] |
Vinzant C. What is a spectrahedron? Notices Amer Math Soc, 2014, 61: 492-494
|
[18] |
Kuroiwa D, Lee G M. On robust multiobjective optimization. Vietnam J Math, 2012, 40: 305-317
|
[19] |
Chuong T D. Robust alternative theorem for linear inequalities with applications to robust multiobjective optimization. Oper Res Lett, 2017, 45: 575-580
doi: 10.1016/j.orl.2017.09.002
|
[20] |
Chuong T D. Linear matrix inequality conditions and duality for a class of robust multiobjective convex polynomial programs. SIAM J Optim, 2018, 28: 2466-2488
doi: 10.1137/17M1143484
|